Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Application of a Genetic Algorithm for Optimising the Location of Electric Vehicle Charging Stations

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The number of electric vehicles has been increasing significantly due to various factors, such as the higher prices of fossil fuels, concerns about the increasing pollution, and the resulting incentive to use energy from renewable sources. There are currently a few charging facilities, which are still quite scattered, and several are still experimental, requiring appropriate planning of this infrastructure in order to support the growing number of electric vehicles adequately. Thus, optimising the location of charging stations becomes a critical issue, which can be achieved through the application of mathematical models and data analysis tools. An example is genetic algorithms, which have demonstrated their versatility in solving complex optimisation problems, especially those involving multiple variables. This work presents a proposal for a more comprehensive genetic algorithm model that encompasses all variables from the perspectives of all entities involved. Its experimentation was conducted using real data, with the aim of finding the best combination of locations, minimising the total number of stations and maximising the coverage of the area under study. Thus, it is essential to carefully consider user preferences, accessibility, energy demand, and existing electrical infrastructure to ensure an effective and sustainable installation. The findings highlight the crucial role of these computing tools in addressing complex problems from various viewpoints, leading to solutions that cater to the needs of all parties involved. While not necessarily perfect, these solutions represent a balanced compromise across multiple dimensions of the problem.

Descrição

Palavras-chave

Charging Stations, Electric Vehicles, Genetic Algorithm, Optimisation

Idioma

Inglês

Citação

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 14968 LNAI, p. 148-159.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso