Logo do repositório

Combining physics-informed neural networks with the freezing mechanism for general Hamiltonian learning

dc.contributor.authorCastelano, Leonardo K.
dc.contributor.authorCunha, Iann
dc.contributor.authorLuiz, Fabricio S.
dc.contributor.authorDe Jesus Napolitano, Reginaldo
dc.contributor.authorPrado, Marcelo V. De Souza [UNESP]
dc.contributor.authorFanchini, Felipe F. [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionFederal Institute of Sao Paulo
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionQuaTI - Quantum Technology & Information
dc.date.accessioned2025-04-29T18:58:30Z
dc.date.issued2024-09-01
dc.description.abstractThe precision required to characterize a Hamiltonian is central to developing advantageous quantum computers, providing powerful advances in quantum sensing and crosstalk mitigation. Traditional methods to determine a Hamiltonian are difficult due to the intricacies of quantum systems, involving numbers of equations and parameters that grow exponentially with the number of qubits. To mitigate these shortcomings, in this paper, we introduce an innovative and effective procedure integrating a physics-informed neural network (PINN) with a freezing mechanism to learn the Hamiltonian parameters efficiently. Although PINN and experimental data alone would become impractical as N increases, the mechanism we introduce freezes the interactions of most of the qubits, leaving just a qubit subsystem to be analyzed by the PINN method. Determination of all physical parameters is accomplished by analyzing the system by parts until completion. We validated the efficacy of our method using simulation data obtained from the IBM quantum computer to obtain the training data and we found that a PINN can learn the two-qubit parameters with high accuracy, achieving a median error of less than 0.1% for systems of up to four qubits. We have successfully combined the PINN analysis of two qubits with the freezing mechanism in the case of a four-qubit system.en
dc.description.affiliationDepartamento de Física Universidade Federal de Sao Carlos (UFSCar) Sao Carlos
dc.description.affiliationFederal Institute of Sao Paulo, Itapetininga
dc.description.affiliationInstituto de Física Gleb Wataghin Universidade Estadual de Campinas, Campinas
dc.description.affiliationSao Carlos Institute of Physics University of Sao Paulo, P.O. Box 369, Sao Carlos
dc.description.affiliationFaculty of Sciences UNESP - Sao Paulo State University, Bauru
dc.description.affiliationQuaTI - Quantum Technology & Information, Sao Carlos
dc.description.affiliationUnespFaculty of Sciences UNESP - Sao Paulo State University, Bauru
dc.identifierhttp://dx.doi.org/10.1103/PhysRevA.110.032607
dc.identifier.citationPhysical Review A, v. 110, n. 3, 2024.
dc.identifier.doi10.1103/PhysRevA.110.032607
dc.identifier.issn2469-9934
dc.identifier.issn2469-9926
dc.identifier.scopus2-s2.0-85203599833
dc.identifier.urihttps://hdl.handle.net/11449/301532
dc.language.isoeng
dc.relation.ispartofPhysical Review A
dc.sourceScopus
dc.titleCombining physics-informed neural networks with the freezing mechanism for general Hamiltonian learningen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.orcid0000-0002-4746-3657[1]
unesp.author.orcid0000-0003-2634-9166[2]
unesp.author.orcid0000-0002-6375-0939 0000-0002-6375-0939[3]
unesp.author.orcid0000-0002-6446-8038[5]
unesp.author.orcid0000-0003-3297-905X 0000-0003-3297-905X[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt

Arquivos