Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Neural Architecture Search for Enhancing Action Video Recognition in Compressed Domains

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Video classification models have become one of the most widely used topics in the computer vision field, encompassing many tasks such as medical, security, industrial, and other applications. Although deep learning models have achieved great results in the video domain, such models are built to operate in the domain of RGB frame sequences. In such models, a prior step is required for decoding video data since the vast majority relies on compressed formats. Nevertheless, large amounts of computational resources are required for decoding, especially in real-time. Researchers have already tackled the task of building networks that work in the compressed domain with promising results but with architectures still very close to those used for the RGB domain. We propose an approach that employs Neural Architecture Search to explore and find the most effective architectures for the compressed domain. Our approach was tested on UCF101 and HMDB51 datasets, obtaining a computationally less complex architecture than similar methods.

Descrição

Palavras-chave

compressed domain, neural architecture search, video classification

Idioma

Inglês

Citação

International Conference on Systems, Signals, and Image Processing.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso