Logotipo do repositório
 

Publicação:
Stroke Lesion Detection Using Convolutional Neural Networks

dc.contributor.authorPereira, Danillo Roberto [UNESP]
dc.contributor.authorReboucas Filho, Pedro P.
dc.contributor.authorRosa, Gustavo Henrique de [UNESP]
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorAlbuquerque, Victor Hugo C. de
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFed Inst Educ Sci & Technol Ceara
dc.contributor.institutionUniv Fortaleza
dc.date.accessioned2021-06-25T12:24:11Z
dc.date.available2021-06-25T12:24:11Z
dc.date.issued2018-01-01
dc.description.abstractStroke is an injury that affects the brain tissue, mainly caused by changes in the blood supply to a particular region of the brain. As consequence, some specific functions related to that affected region can be reduced, decreasing the quality of life of the patient. In this work, we deal with the problem of stroke detection in Computed Tomography (CT) images using Convolutional Neural Networks (CNN) optimized by Particle Swarm Optimization (PSO). We considered two different kinds of strokes, ischemic and hemorrhagic, as well as making available a public dataset to foster the research related to stroke detection in the human brain. The dataset comprises three different types of images for each case, i.e., the original CT image, one with the segmented cranium and an additional one with the radiological density's map. The results evidenced that CNN's are suitable to deal with stroke detection, obtaining promising results.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationFed Inst Educ Sci & Technol Ceara, Limoeiro Do Norte, CE, Brazil
dc.description.affiliationUniv Fortaleza, Grad Program Appl Informat, Fortaleza, CE, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)
dc.description.sponsorshipIdFAPESP: 2013/073750
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2015/25739-4
dc.description.sponsorshipIdFAPESP: 2016/21243-7
dc.description.sponsorshipIdCNPq: 470501/2013-8
dc.description.sponsorshipIdCNPq: 301928/2014-2
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdFUNDUNESP: 2597.2017
dc.format.extent6
dc.identifier.citation2018 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 6 p., 2018.
dc.identifier.issn2161-4393
dc.identifier.urihttp://hdl.handle.net/11449/209622
dc.identifier.wosWOS:000585967402038
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2018 International Joint Conference On Neural Networks (ijcnn)
dc.sourceWeb of Science
dc.titleStroke Lesion Detection Using Convolutional Neural Networksen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.author.orcid0000-0002-6442-8343[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos