Precipitates segmentation from scanning electron microscope images through machine learning techniques
dc.contributor.author | Papa, João Paulo [UNESP] | |
dc.contributor.author | Pereira, Clayton R. [UNESP] | |
dc.contributor.author | De Albuquerque, Victor H. C. | |
dc.contributor.author | Silva, Cleiton C. | |
dc.contributor.author | Falcão, Alexandre X. | |
dc.contributor.author | Tavares, João Manuel R. S. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | University of Fortaleza | |
dc.contributor.institution | Federal University of Ceará | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | University of Porto | |
dc.date.accessioned | 2014-05-27T11:25:54Z | |
dc.date.available | 2014-05-27T11:25:54Z | |
dc.date.issued | 2011-06-02 | |
dc.description.abstract | The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg. | en |
dc.description.affiliation | Dep. of Computing UNESP Univ Estadual Paulista, Bauru | |
dc.description.affiliation | Center of Technological Sciences University of Fortaleza, Fortaleza | |
dc.description.affiliation | Dep. of Materials and Metallurgical Engineering Federal University of Ceará | |
dc.description.affiliation | Institute of Computing State University of Campinas, Campinas | |
dc.description.affiliation | Faculty of Engineering University of Porto, Porto | |
dc.description.affiliationUnesp | Dep. of Computing UNESP Univ Estadual Paulista, Bauru | |
dc.format.extent | 456-468 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-642-21073-0_40 | |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6636 LNCS, p. 456-468. | |
dc.identifier.doi | 10.1007/978-3-642-21073-0_40 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.lattes | 9039182932747194 | |
dc.identifier.scopus | 2-s2.0-79957648069 | |
dc.identifier.uri | http://hdl.handle.net/11449/72488 | |
dc.identifier.wos | WOS:000303500200040 | |
dc.language.iso | eng | |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.relation.ispartofsjr | 0,295 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Hastelloy C-276 | |
dc.subject | Metallic Precipitates Segmentation | |
dc.subject | Optimum-Path Forest | |
dc.subject | Scanning Electron Microscope | |
dc.subject | Support Vector Machines | |
dc.subject | Automatic identification | |
dc.subject | Bayesian classifier | |
dc.subject | Dissimilar welding | |
dc.subject | Machine learning techniques | |
dc.subject | Metallic material | |
dc.subject | Metallographic images | |
dc.subject | Recognition rates | |
dc.subject | Supervised pattern recognition | |
dc.subject | Automation | |
dc.subject | Durability | |
dc.subject | Electron microscopes | |
dc.subject | Image analysis | |
dc.subject | Learning algorithms | |
dc.subject | Pattern recognition | |
dc.subject | Scanning | |
dc.subject | Scanning electron microscopy | |
dc.subject | Self organizing maps | |
dc.subject | Support vector machines | |
dc.subject | Image segmentation | |
dc.title | Precipitates segmentation from scanning electron microscope images through machine learning techniques | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.springer.com/open+access/authors+rights | |
dspace.entity.type | Publication | |
unesp.author.lattes | 9039182932747194 | |
unesp.author.orcid | 0000-0001-7603-6526[6] | |
unesp.author.orcid | 0000-0002-6494-7514[1] | |
unesp.author.orcid | 0000-0001-6827-8939[4] | |
unesp.author.orcid | 0000-0003-3886-4309[3] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |