Logotipo do repositório
 

Publicação:
Sugarcane Stalk Content Prediction in the Presence of a Solid Impurity Using an Artificial Intelligence Method Focused on Sugar Manufacturing

dc.contributor.authorGuedes, Wesley Nascimento [UNESP]
dc.contributor.authordos Santos, Lucas Janoni [UNESP]
dc.contributor.authorFilletti, Érica Regina [UNESP]
dc.contributor.authorPereira, Fabíola Manhas Verbi [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T15:45:59Z
dc.date.available2019-10-06T15:45:59Z
dc.date.issued2019-01-01
dc.description.abstractFor the first time in literature, an analytical method was developed using artificial neural networks (ANNs) combined with color information from digital images to predict the content of sugarcane stalks in the presence of a solid impurity. The data were generated using a laboratory-made simple imaging system and free-access computational routine for the conversion of the images into 10 colors. The ANN model was implemented using 10 neurons in the input layer, 8 neurons in the hidden layer and 1 neuron in the output layer related to the content of sugarcane stalks. The ANN model provided relative errors of 3% and achieved correlation coefficients of 0.98, 0.93, and 0.91 for the training, validation and test sets, respectively. A partial least squares (PLS) model showed the nonlinear nature of the data that implies the application of ANN model. The developed method has the potential to be applied in sugarcane mills as an improvement for the production of high-quality sugar.en
dc.description.affiliationBioenergy Research Institute (IPBEN) Institute of Chemistry São Paulo State University (UNESP)
dc.description.affiliationUnespBioenergy Research Institute (IPBEN) Institute of Chemistry São Paulo State University (UNESP)
dc.identifierhttp://dx.doi.org/10.1007/s12161-019-01551-2
dc.identifier.citationFood Analytical Methods.
dc.identifier.doi10.1007/s12161-019-01551-2
dc.identifier.issn1936-976X
dc.identifier.issn1936-9751
dc.identifier.lattes5704445473654024
dc.identifier.orcid0000-0002-8117-2108
dc.identifier.scopus2-s2.0-85067291939
dc.identifier.urihttp://hdl.handle.net/11449/187746
dc.language.isoeng
dc.relation.ispartofFood Analytical Methods
dc.rights.accessRightsAcesso abertopt
dc.sourceScopus
dc.subjectArtificial neural networks
dc.subjectDigital images
dc.subjectFood quality
dc.subjectSugar
dc.titleSugarcane Stalk Content Prediction in the Presence of a Solid Impurity Using an Artificial Intelligence Method Focused on Sugar Manufacturingen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.lattes5704445473654024(4)
unesp.author.orcid0000-0002-8117-2108[4]
unesp.author.orcid0000-0002-8117-2108(4)
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Pesquisa em Bioenergia, Rio Claropt

Arquivos