Publicação: Global optimization using a genetic algorithm with hierarchically structured population
dc.contributor.author | Toledo, C. F. M. | |
dc.contributor.author | Oliveira, L. | |
dc.contributor.author | Franca, P. M. [UNESP] | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-12-03T13:08:56Z | |
dc.date.available | 2014-12-03T13:08:56Z | |
dc.date.issued | 2014-05-01 | |
dc.description.abstract | This paper applies a genetic algorithm with hierarchically structured population to solve unconstrained optimization problems. The population has individuals distributed in several overlapping clusters, each one with a leader and a variable number of support individuals. The hierarchy establishes that leaders must be fitter than its supporters with the topological organization of the clusters following a tree. Computational tests evaluate different population structures, population sizes and crossover operators for better algorithm performance. A set of known benchmark test problems is solved and the results found are compared with those obtained from other methods described in the literature, namely, two genetic algorithms, a simulated annealing, a differential evolution and a particle swarm optimization. The results indicate that the method employed is capable of achieving better performance than the previous approaches in regard as the two criteria usually employed for comparisons: the number of function evaluations and rate of success. The method also has a superior performance if the number of problems solved is taken into account. (C) 2013 Elsevier B.V. All rights reserved. | en |
dc.description.affiliation | Univ Sao Paulo, ICMC, BR-13566590 Sao Carlos, SP, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, Inst Comp, BR-13083970 Campinas, SP, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, BR-19060900 Presidente Prudente, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, BR-19060900 Presidente Prudente, SP, Brazil | |
dc.format.extent | 341-351 | |
dc.identifier | http://dx.doi.org/10.1016/j.cam.2013.11.008 | |
dc.identifier.citation | Journal Of Computational And Applied Mathematics. Amsterdam: Elsevier Science Bv, v. 261, p. 341-351, 2014. | |
dc.identifier.doi | 10.1016/j.cam.2013.11.008 | |
dc.identifier.issn | 0377-0427 | |
dc.identifier.uri | http://hdl.handle.net/11449/111731 | |
dc.identifier.wos | WOS:000331507900028 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | |
dc.relation.ispartofjcr | 1.632 | |
dc.relation.ispartofsjr | 0,938 | |
dc.rights.accessRights | Acesso restrito | pt |
dc.source | Web of Science | |
dc.subject | Genetic algorithms | en |
dc.subject | Global optimization | en |
dc.subject | Continuous optimization | en |
dc.subject | Population set-based methods | en |
dc.subject | Hierarchical structure | en |
dc.title | Global optimization using a genetic algorithm with hierarchically structured population | en |
dc.type | Artigo | pt |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-0490-5515[3] | |
unesp.author.orcid | 0000-0003-4776-8052[1] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudente | pt |