Logotipo do repositório
 

Publicação:
Handwritten pattern recognition for early Parkinson's disease diagnosis

dc.contributor.authorBernardo, Lucas S.
dc.contributor.authorQuezada, Angeles
dc.contributor.authorMunoz, Roberto
dc.contributor.authorMaia, Fernanda Martins
dc.contributor.authorPereira, Clayton R. [UNESP]
dc.contributor.authorWu, Wanqing
dc.contributor.authorde Albuquerque, Victor Hugo C.
dc.contributor.institutionUniversity of Fortaleza
dc.contributor.institutionInstituto Tecnológico de Tijuana
dc.contributor.institutionUniversidad de Valparaíso
dc.contributor.institutionUniversity of Fortaleza. Neurology Department
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionSun Yat-Sen University
dc.date.accessioned2019-10-06T15:39:54Z
dc.date.available2019-10-06T15:39:54Z
dc.date.issued2019-07-01
dc.description.abstractParkinson's disease is a neurodegenerative disorder that affects around 10 million people in the world and is slightly more prevalent in males. It is characterized by the loss of neurons in a region of the brain known as substantia nigra. The neurons of this region are responsible for synthesizing the neurotransmitter dopamine, and a decrease in the production of this substance may cause motor symptoms, a characteristic of the disease. To obtain a definitive diagnosis, the patient's medical history is analyzed and the subject submitted to a series of clinical exams. One of these exams that can take place in the clinical environment comprises asking the patient to create a series of specific drawings. Our work is based on asking the patients to draw using a software developed for this specific purpose. The drawings will then be passed through a series of image methods to reduce noises and extract the characteristics of 11 metrics of each drawing; finally, these 11 metrics will be stored. Machine learning techniques such as Optimum-Path Forest, Support Vector Machine remove, and Naive Bayes use the dataset to search and learn of the characteristics for the process of classifying individuals distributed into two classes: sick and healthy.en
dc.description.affiliationGraduate Program in Applied Informatics University of Fortaleza
dc.description.affiliationInstituto Tecnológico de Tijuana
dc.description.affiliationEscuela de Ingeniería Civil Informática Centro de Investigación y Desarrollo en Ingeniería en Salud Universidad de Valparaíso
dc.description.affiliationMedical Sciences Post-Graduation Program University of Fortaleza. Neurology Department, Hospital Geral de Fortaleza
dc.description.affiliationUNESP - São Paulo State University School of Sciences
dc.description.affiliationSchool of Biomedical Engineering Sun Yat-Sen University
dc.description.affiliationUnespUNESP - São Paulo State University School of Sciences
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipNational Natural Science Foundation of China
dc.description.sponsorshipIdCNPq: 304315/2017-6
dc.description.sponsorshipIdCNPq: 430274/2018-1
dc.description.sponsorshipIdNational Natural Science Foundation of China: 61873349
dc.description.sponsorshipIdNational Natural Science Foundation of China: U180120019
dc.format.extent78-84
dc.identifierhttp://dx.doi.org/10.1016/j.patrec.2019.04.003
dc.identifier.citationPattern Recognition Letters, v. 125, p. 78-84.
dc.identifier.doi10.1016/j.patrec.2019.04.003
dc.identifier.issn0167-8655
dc.identifier.scopus2-s2.0-85064211149
dc.identifier.urihttp://hdl.handle.net/11449/187552
dc.language.isoeng
dc.relation.ispartofPattern Recognition Letters
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectimage processing
dc.subjectmachine learning
dc.subjectParkinson's disease
dc.titleHandwritten pattern recognition for early Parkinson's disease diagnosisen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0003-1302-0206[3]
unesp.author.orcid0000-0003-0932-8785[6]
unesp.author.orcid0000-0003-3886-4309[7]

Arquivos

Coleções