Logotipo do repositório
 

Publicação:
Predicting Canopy Nitrogen Content in Citrus-Trees Using Random Forest Algorithm Associated to Spectral Vegetation Indices from UAV-Imagery

dc.contributor.authorOsco, Lucas Prado
dc.contributor.authorMarques Ramos, Ana Paula
dc.contributor.authorPereira, Danilo Roberto
dc.contributor.authorSaito Moriya, Erika Akemi [UNESP]
dc.contributor.authorImai, Nilton Nobuhiro [UNESP]
dc.contributor.authorMatsubara, Edson Takashi
dc.contributor.authorEstrabis, Nayara
dc.contributor.authorSouza, Mauricio de
dc.contributor.authorMarcato Junior, Jose
dc.contributor.authorGoncalves, Wesley Nunes
dc.contributor.authorLi, Jonathan
dc.contributor.authorLiesenberg, Veraldo
dc.contributor.authorCreste, Jose Eduardo
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.contributor.institutionUniv Western Sao Paulo
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Waterloo
dc.contributor.institutionSanta Catarina State Univ UDESC
dc.date.accessioned2020-12-10T19:46:39Z
dc.date.available2020-12-10T19:46:39Z
dc.date.issued2019-12-02
dc.description.abstractThe traditional method of measuring nitrogen content in plants is a time-consuming and labor-intensive task. Spectral vegetation indices extracted from unmanned aerial vehicle (UAV) images and machine learning algorithms have been proved effective in assisting nutritional analysis in plants. Still, this analysis has not considered the combination of spectral indices and machine learning algorithms to predict nitrogen in tree-canopy structures. This paper proposes a new framework to infer the nitrogen content in citrus-tree at a canopy-level using spectral vegetation indices processed with the random forest algorithm. A total of 33 spectral indices were estimated from multispectral images acquired with a UAV-based sensor. Leaf samples were gathered from different planting-fields and the leaf nitrogen content (LNC) was measured in the laboratory, and later converted into the canopy nitrogen content (CNC). To evaluate the robustness of the proposed framework, we compared it with other machine learning algorithms. We used 33,600 citrus trees to evaluate the performance of the machine learning models. The random forest algorithm had higher performance in predicting CNC than all models tested, reaching an R-2 of 0.90, MAE of 0.341 gkg(-1) and MSE of 0.307 gkg(-1). We demonstrated that our approach is able to reduce the need for chemical analysis of the leaf tissue and optimizes citrus orchard CNC monitoring.en
dc.description.affiliationUniv Fed Mato Grosso do Sul, Fac Engn Architecture & Urbanism & Geog, Ave Costa E Silva, BR-79070900 Campo Grande, MS, Brazil
dc.description.affiliationUniv Western Sao Paulo, Environm & Reg Dev, R Jose Bongiovani,700-Cidade Univ, BR-19050920 Presidente Prudente, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Cartog Sci, BR-19060900 Presidente Prudente, Brazil
dc.description.affiliationUniv Fed Mato Grosso do Sul, Fac Comp Sci, Ave Costa E Silva, BR-79070900 Campo Grande, MS, Brazil
dc.description.affiliationUniv Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
dc.description.affiliationUniv Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
dc.description.affiliationSanta Catarina State Univ UDESC, Forest Engn Dept, Ave Luiz de Camoes 2090, BR-88520000 Conta Dinheiro, SC, Brazil
dc.description.affiliationUniv Western Sao Paulo, Agron Dev, R Jose Bongiovani,700 Cidade Univ, BR-19050920 Presidente Prudente, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Cartog Sci, BR-19060900 Presidente Prudente, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFAPESC
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: p: 88881.311850/2018-01
dc.description.sponsorshipIdFAPESC: 2017TR1762
dc.description.sponsorshipIdCNPq: 313887/2018-7
dc.format.extent17
dc.identifierhttp://dx.doi.org/10.3390/rs11242925
dc.identifier.citationRemote Sensing. Basel: Mdpi, v. 11, n. 24, 17 p., 2019.
dc.identifier.doi10.3390/rs11242925
dc.identifier.lattes2985771102505330
dc.identifier.orcid0000-0003-0516-0567
dc.identifier.urihttp://hdl.handle.net/11449/196489
dc.identifier.wosWOS:000507333400041
dc.language.isoeng
dc.publisherMdpi
dc.relation.ispartofRemote Sensing
dc.sourceWeb of Science
dc.subjectUAV multispectral imagery
dc.subjectspectral vegetation indices
dc.subjectmachine learning
dc.subjectplant nutrition
dc.titlePredicting Canopy Nitrogen Content in Citrus-Trees Using Random Forest Algorithm Associated to Spectral Vegetation Indices from UAV-Imageryen
dc.typeArtigo
dcterms.rightsHolderMdpi
dspace.entity.typePublication
unesp.author.lattes2985771102505330[5]
unesp.author.orcid0000-0002-0258-536X[1]
unesp.author.orcid0000-0001-6633-2903[2]
unesp.author.orcid0000-0002-9096-6866[9]
unesp.author.orcid0000-0003-0564-7818[12]
unesp.author.orcid0000-0003-0516-0567[5]
unesp.departmentCartografia - FCTpt

Arquivos