Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Barrett's Esophagus Identification Using Optimum-Path Forest

dc.contributor.authorSouza, Luis A.
dc.contributor.authorAfonso, Luis C. S.
dc.contributor.authorPalm, Christoph
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionOstbayer Tech Hsch
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:48:13Z
dc.date.available2018-11-26T17:48:13Z
dc.date.issued2017-01-01
dc.description.abstractComputer-assisted analysis of endoscopic images can be helpful to the automatic diagnosis and classification of neoplastic lesions. Barrett's esophagus (BE) is a common type of reflux that is not straightforward to be detected by endoscopic surveillance, thus being way susceptible to erroneous diagnosis, which can cause cancer when not treated properly. In this work, we introduce the Optimum-Path Forest (OPF) classifier to the task of automatic identification of Barrett's esophagus, with promising results and outperforming the well-known Support Vector Machines (SVM) in the aforementioned context. We consider describing endoscopic images by means of feature extractors based on key point information, such as the Speeded up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT), for further designing a bag-of-visual-words that is used to feed both OPF and SVM classifiers. The best results were obtained by means of the OPF classifier for both feature extractors, with values lying on 0.732 (SURF) - 0.735 (SIFT) for sensitivity, 0.782 (SURF) - 0.806 (SIFT) for specificity, and 0.738 (SURF) - 0.732 (SIFT) for the accuracy.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, BR-13565905 Sao Carlos, SP, Brazil
dc.description.affiliationOstbayer Tech Hsch, D-93053 Regensburg, Germany
dc.description.affiliationSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCAPES: BEX 0581-16-0
dc.format.extent308-314
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2017.47
dc.identifier.citation2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 308-314, 2017.
dc.identifier.doi10.1109/SIBGRAPI.2017.47
dc.identifier.issn1530-1834
dc.identifier.urihttp://hdl.handle.net/11449/163866
dc.identifier.wosWOS:000425243500041
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.titleBarrett's Esophagus Identification Using Optimum-Path Foresten
dc.typeTrabalho apresentado em eventopt
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.orcid0000-0001-9468-2871[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos