Logotipo do repositório
 

Publicação:
Software Optimisation for Mechanised Sugarcane Planting Scenarios to Aid in Decision-Making

dc.contributor.authorNardo, L. A. S. [UNESP]
dc.contributor.authorPaixao, C. S. S.
dc.contributor.authorGonzaga, A. R. [UNESP]
dc.contributor.authorOliveira, L. P. [UNESP]
dc.contributor.authorVoltarelli, M. A.
dc.contributor.authorSilva, R. P. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Sorocaba
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2020-12-10T17:39:09Z
dc.date.available2020-12-10T17:39:09Z
dc.date.issued2020-08-06
dc.description.abstractWith advancements in the mechanisation of sugarcane farming, studies have been fundamental to improving the process-from soil preparation to harvest. Faced with increasing challenges of economic scenarios, alternatives should be sought aimed at optimising resources, reducing costs, improving operational efficiency, logistics, among others. Planting is one of the main agricultural operations, any deviation in this phase harms the crop during the crop cycle, so planning in advance the area to be planted is essential for better results. Analysis of better planting scenarios prior to harvest combined with the use of autopilot requires knowledge of the systematisation areas and skilled labour to guarantee the quality of the process and reduce losses and damages. The objective of this study is to both evaluate and optimise sugarcane planting scenarios based on travel and manoeuvre time, travel distance, number of manoeuvres, and fuel consumption. The study was conducted in the municipality of Tanabi, SP, during the 2013 planting season. The results showed fewer manoeuvres and longer planting lines in the optimised area, increased the availability of the machine and generated possible cost reduction.en
dc.description.affiliationSao Paulo State Univ, Dept Engn & Exact Sci, Lab Agr Machinery & Mechanizat, Sao Paulo, Brazil
dc.description.affiliationUniv Sorocaba, Sao Paulo, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Sao Paulo, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Engn & Exact Sci, Lab Agr Machinery & Mechanizat, Sao Paulo, Brazil
dc.format.extent8
dc.identifierhttp://dx.doi.org/10.1007/s12355-020-00868-1
dc.identifier.citationSugar Tech. New Delhi: Springer India, 8 p., 2020.
dc.identifier.doi10.1007/s12355-020-00868-1
dc.identifier.issn0972-1525
dc.identifier.urihttp://hdl.handle.net/11449/195571
dc.identifier.wosWOS:000556641800001
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofSugar Tech
dc.sourceWeb of Science
dc.subjectPrecision agriculture
dc.subjectAgroCAD(R)
dc.subjectAgricultural planning
dc.subjectRunning time
dc.titleSoftware Optimisation for Mechanised Sugarcane Planting Scenarios to Aid in Decision-Makingen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication

Arquivos

Coleções