Logo do repositório
 

Tovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Technique

dc.contributor.authorLieira, Douglas D. [UNESP]
dc.contributor.authorQuessada, Matheus S. [UNESP]
dc.contributor.authorda Costa, Joahannes B.D.
dc.contributor.authorCerqueira, Eduardo
dc.contributor.authorRosário, Denis
dc.contributor.authorMeneguette, Rodolfo I.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFederal Institute of São Paulo (IFSP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Federal do Pará (UFPA)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2022-04-28T19:51:25Z
dc.date.available2022-04-28T19:51:25Z
dc.date.issued2021-01-01
dc.description.abstractIntelligent Transportation Systems (ITSs) will be part of our daily lives, where new services are bringing novel challenges for smart cities. The ITS services rely on vehicular clouds (VC) to aggregate tasks from other vehicles to provide cloud services closest to the vehicular users. However, the resource and task allocation processes in dynamic and mobile environments are still open issues. This paper proposes a task optimization mechanism based on the meta-heuristic algorithm of the Grey Wolf Optimizer, called TOVEC. It aims to improve the usage of the available resources in a VC and maximizing task allocation. Simulation results showed that the TOVEC increases the number of tasks served by up to 34.2%, maximizes the use of resources by up to 21.5%, and improves the allocation reward by up to 24.7% compared to Greedy and Dynamic Programming (DP) methods.en
dc.description.affiliationSao Paulo State University (UNESP), São Paulo
dc.description.affiliationFederal Institute of São Paulo (IFSP), São Paulo
dc.description.affiliationUniversity of Campinas (UNICAMP), São Paulo
dc.description.affiliationFederal University of Pará (UFPA), Pará
dc.description.affiliationUniversity of São Paulo (USP), São Paulo
dc.description.affiliationUnespSao Paulo State University (UNESP), São Paulo
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2018/16703-4
dc.description.sponsorshipIdFAPESP: 2020/07162-0
dc.description.sponsorshipIdCNPq: 309822/2018-1
dc.description.sponsorshipIdCNPq: 407248/2018-8
dc.format.extent358-363
dc.identifierhttp://dx.doi.org/10.1109/IWCMC51323.2021.9498784
dc.identifier.citation2021 International Wireless Communications and Mobile Computing, IWCMC 2021, p. 358-363.
dc.identifier.doi10.1109/IWCMC51323.2021.9498784
dc.identifier.scopus2-s2.0-85125668148
dc.identifier.urihttp://hdl.handle.net/11449/223560
dc.language.isoeng
dc.relation.ispartof2021 International Wireless Communications and Mobile Computing, IWCMC 2021
dc.sourceScopus
dc.subjectMeta-heuristic
dc.subjectTask allocation
dc.subjectVehicular cloud
dc.titleTovec: Task Optimization Mechanism for Vehicular Clouds Using Meta-heuristic Techniqueen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication

Arquivos

Coleções