Publicação: Mining negative rules: a literature review focusing on performance
dc.contributor.author | Colombo, Alexandre [UNESP] | |
dc.contributor.author | Spolon, Roberta [UNESP] | |
dc.contributor.author | Lobato, Renata Spolon [UNESP] | |
dc.contributor.author | Manacero Junior, Aleardo [UNESP] | |
dc.contributor.author | Cavenaghi, Marcos Antonio | |
dc.contributor.author | Rocha, A. | |
dc.contributor.author | Goncalves, R. | |
dc.contributor.author | Penalvo, F. G. | |
dc.contributor.author | Martins, J. | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Humber Inst Technol & Adv Learning | |
dc.date.accessioned | 2022-11-30T13:44:54Z | |
dc.date.available | 2022-11-30T13:44:54Z | |
dc.date.issued | 2021-01-01 | |
dc.description.abstract | Mining of frequent patterns and association rules is a Data Mining task that aims to determine consistent relationships among elements in a transaction database. Algorithms that consider the absence of elements perform the generation of so-called negative rules which result in associations of great interest for some applications, enabling it to obtain extra knowledge in comparison to the positive case. This type of association presents a problem regarding the increased amount of generated rules which demands adequate computational resources. This study presents a systematic review with the aim of grouping the concepts of the main contemporary works on this topic, in order to assist the development of future works in this subject. | en |
dc.description.affiliation | Univ Estadual Paulista, Dept Comp, Bauru, SP, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Dept Ciencias Comp & Estat, Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.affiliation | Humber Inst Technol & Adv Learning, Fac Business, Toronto, ON, Canada | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Comp, Bauru, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Ciencias Comp & Estat, Sao Jose Do Rio Preto, SP, Brazil | |
dc.format.extent | 6 | |
dc.identifier.citation | Proceedings Of 2021 16th Iberian Conference On Information Systems And Technologies (cisti'2021). New York: Ieee, 6 p., 2021. | |
dc.identifier.issn | 2166-0727 | |
dc.identifier.uri | http://hdl.handle.net/11449/237784 | |
dc.identifier.wos | WOS:000824588500284 | |
dc.language.iso | por | |
dc.publisher | Ieee | |
dc.relation.ispartof | Proceedings Of 2021 16th Iberian Conference On Information Systems And Technologies (cisti'2021) | |
dc.source | Web of Science | |
dc.subject | Data mining | |
dc.subject | Frequent patterns | |
dc.subject | Negative association rules | |
dc.subject | Parallel algorithms | |
dc.subject | Systematic literature review | |
dc.title | Mining negative rules: a literature review focusing on performance | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Computação - FC | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |