Logotipo do repositório
 

Publicação:
Mining negative rules: a literature review focusing on performance

dc.contributor.authorColombo, Alexandre [UNESP]
dc.contributor.authorSpolon, Roberta [UNESP]
dc.contributor.authorLobato, Renata Spolon [UNESP]
dc.contributor.authorManacero Junior, Aleardo [UNESP]
dc.contributor.authorCavenaghi, Marcos Antonio
dc.contributor.authorRocha, A.
dc.contributor.authorGoncalves, R.
dc.contributor.authorPenalvo, F. G.
dc.contributor.authorMartins, J.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionHumber Inst Technol & Adv Learning
dc.date.accessioned2022-11-30T13:44:54Z
dc.date.available2022-11-30T13:44:54Z
dc.date.issued2021-01-01
dc.description.abstractMining of frequent patterns and association rules is a Data Mining task that aims to determine consistent relationships among elements in a transaction database. Algorithms that consider the absence of elements perform the generation of so-called negative rules which result in associations of great interest for some applications, enabling it to obtain extra knowledge in comparison to the positive case. This type of association presents a problem regarding the increased amount of generated rules which demands adequate computational resources. This study presents a systematic review with the aim of grouping the concepts of the main contemporary works on this topic, in order to assist the development of future works in this subject.en
dc.description.affiliationUniv Estadual Paulista, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Ciencias Comp & Estat, Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationHumber Inst Technol & Adv Learning, Fac Business, Toronto, ON, Canada
dc.description.affiliationUnespUniv Estadual Paulista, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Ciencias Comp & Estat, Sao Jose Do Rio Preto, SP, Brazil
dc.format.extent6
dc.identifier.citationProceedings Of 2021 16th Iberian Conference On Information Systems And Technologies (cisti'2021). New York: Ieee, 6 p., 2021.
dc.identifier.issn2166-0727
dc.identifier.urihttp://hdl.handle.net/11449/237784
dc.identifier.wosWOS:000824588500284
dc.language.isopor
dc.publisherIeee
dc.relation.ispartofProceedings Of 2021 16th Iberian Conference On Information Systems And Technologies (cisti'2021)
dc.sourceWeb of Science
dc.subjectData mining
dc.subjectFrequent patterns
dc.subjectNegative association rules
dc.subjectParallel algorithms
dc.subjectSystematic literature review
dc.titleMining negative rules: a literature review focusing on performanceen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentComputação - FCpt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos