Logotipo do repositório
 

Publicação:
Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation

dc.contributor.authorRosa, G. J M
dc.contributor.authorPadovani, C. R. [UNESP]
dc.contributor.authorGianola, D.
dc.contributor.institutionMichigan State University
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversity of Wisconsin-Madison (UW)
dc.date.accessioned2014-05-27T11:20:35Z
dc.date.available2014-05-27T11:20:35Z
dc.date.issued2003-01-01
dc.description.abstractLinear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, so it is not reasonable to assume independence between observations in the same cluster. In most biological applications, it is assumed that the distributions of the random effects and of the residuals are Gaussian. This makes inferences vulnerable to the presence of outliers. Here, linear mixed effects models with normal/independent residual distributions for robust inferences are described. Specific distributions examined include univariate and multivariate versions of the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted and Markov chain Monte Carlo is used to carry out the posterior analysis. The procedures are illustrated using birth weight data on rats in a texicological experiment. Results from the Gaussian and robust models are contrasted, and it is shown how the implementation can be used for outlier detection. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process in linear mixed models, and they are easily implemented using data augmentation and MCMC techniques.en
dc.description.affiliationDepartment of Animal Science Michigan State University 1205-1 Anthony Hall, East Lansing, MI 48910
dc.description.affiliationDepto. de Bioestatística Univ. Estadual Paulista (UNESP), Botucatu 18618
dc.description.affiliationDepartment of Animal Sciences University of Wisconsin, Madison, WI 53706
dc.description.affiliationUnespDepto. de Bioestatística Univ. Estadual Paulista (UNESP), Botucatu 18618
dc.format.extent573-590
dc.identifierhttp://dx.doi.org/10.1002/bimj.200390034
dc.identifier.citationBiometrical Journal, v. 45, n. 5, p. 573-590, 2003.
dc.identifier.doi10.1002/bimj.200390034
dc.identifier.issn0323-3847
dc.identifier.lattes8727897080522289
dc.identifier.scopus2-s2.0-0042570344
dc.identifier.urihttp://hdl.handle.net/11449/67151
dc.language.isoeng
dc.relation.ispartofBiometrical Journal
dc.relation.ispartofjcr1.114
dc.relation.ispartofsjr1,169
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectBayesian inference
dc.subjectGibbs sampling
dc.subjectMetropolis-Hastings
dc.subjectMixed effects model
dc.subjectNormal/independent distribution
dc.subjectRobust model
dc.titleRobust linear mixed models with normal/independent distributions and Bayesian MCMC implementationen
dc.typeArtigo
dcterms.licensehttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dspace.entity.typePublication
unesp.author.lattes8727897080522289[2]
unesp.author.orcid0000-0002-7719-9682[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt
unesp.departmentBioestatística - IBBpt

Arquivos