Logo do repositório
 

Robust and fast vowel recognition using optimum-path forest

dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorMarana, Aparecido Nilceu [UNESP]
dc.contributor.authorSpadotto, André A.
dc.contributor.authorGuido, Rodrigo C.
dc.contributor.authorFalcão, Alexandre X.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2014-05-27T11:24:50Z
dc.date.available2014-05-27T11:24:50Z
dc.date.issued2010-11-08
dc.description.abstractThe applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE.en
dc.description.affiliationSão Paulo State University Computer Science Department
dc.description.affiliationUniversity of São Paulo Physics Institute of São Carlos
dc.description.affiliationUniversity of Campinas Institute of Computing
dc.description.affiliationUnespSão Paulo State University Computer Science Department
dc.format.extent2190-2193
dc.identifierhttp://dx.doi.org/10.1109/ICASSP.2010.5495695
dc.identifier.citationICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, p. 2190-2193.
dc.identifier.doi10.1109/ICASSP.2010.5495695
dc.identifier.issn1520-6149
dc.identifier.lattes9039182932747194
dc.identifier.lattes6027713750942689
dc.identifier.lattes6542086226808067
dc.identifier.orcid0000-0002-0924-8024
dc.identifier.scopus2-s2.0-78049379155
dc.identifier.urihttp://hdl.handle.net/11449/71955
dc.identifier.wosWOS:000287096002042
dc.language.isoeng
dc.relation.ispartofICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectNeural networks
dc.subjectPattern recognition
dc.subjectSignal classification
dc.subjectSpeech recognition
dc.subjectArtificial neural networks
dc.subjectData sets
dc.subjectMachine-learning
dc.subjectPattern recognition techniques
dc.subjectProcessing systems
dc.subjectRealtime processing
dc.subjectSpoken languages
dc.subjectState-of-the-art system
dc.subjectTraining procedures
dc.subjectTraining time
dc.subjectVowel recognition
dc.subjectBiometrics
dc.subjectClassifiers
dc.subjectComputational linguistics
dc.subjectInformation theory
dc.subjectReal time systems
dc.subjectSignal processing
dc.subjectSpeech processing
dc.subjectSupport vector machines
dc.subjectTelecommunication equipment
dc.titleRobust and fast vowel recognition using optimum-path foresten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dspace.entity.typePublication
unesp.author.lattes9039182932747194
unesp.author.lattes6027713750942689[2]
unesp.author.lattes6542086226808067[4]
unesp.author.orcid0000-0003-4861-7061[2]
unesp.author.orcid0000-0002-0924-8024[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos