Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Lotka–Volterra model with Allee effect: equilibria, coexistence and size scaling of maximum and minimum abundance

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The Lotka–Volterra competition model (LVCM) is a fundamental tool for ecology, widely used to represent complex communities. The Allee effect (AE) is a phenomenon in which there is a positive correlation between population density and fitness, at low population densities. However, the interplay between the LVCM and AE has been seldom analyzed in multispecies models. Here, we analyze the mathematical properties of the LVCM + AE, investigating the coexistence of species interacting through neutral diffuse competition, their equilibria and stable points. Minimum viable population density arises as the threshold below which species go extinct, characteristic of strong Allee effects. Then, by imposing relationships of main parameters to body size, i.e. allometric scaling, we derive a general solution to the size-scaling maximum and minimum expected density under plausible scenarios. The scaling of maximum population density is consistent with the literature, but we also provide novel predictions on the scaling of the lower limit to population density, a critical value for conservation science. The resulting framework is general and yields results that increase our current understanding of how complex demographic processes can be linked to ubiquitous ecological patterns.

Descrição

Palavras-chave

Allee effect, Allometric scaling, Coexistence, Lotka–Volterra competition model, Size–density relationship, Stability

Idioma

Inglês

Citação

Journal of Mathematical Biology, v. 87, n. 6, 2023.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso