Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Lotka–Volterra model with Allee effect: equilibria, coexistence and size scaling of maximum and minimum abundance

dc.contributor.authorCammarota, Denise [UNESP]
dc.contributor.authorMonteiro, Noemi Zeraick
dc.contributor.authorMenezes, Rafael
dc.contributor.authorFort, Hugo
dc.contributor.authorSegura, Angel M.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFederal University of Juiz de Fora
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversity of the Republic
dc.contributor.institutionCentro Universitario Regional Este- CURE
dc.date.accessioned2025-04-29T18:57:29Z
dc.date.issued2023-12-01
dc.description.abstractThe Lotka–Volterra competition model (LVCM) is a fundamental tool for ecology, widely used to represent complex communities. The Allee effect (AE) is a phenomenon in which there is a positive correlation between population density and fitness, at low population densities. However, the interplay between the LVCM and AE has been seldom analyzed in multispecies models. Here, we analyze the mathematical properties of the LVCM + AE, investigating the coexistence of species interacting through neutral diffuse competition, their equilibria and stable points. Minimum viable population density arises as the threshold below which species go extinct, characteristic of strong Allee effects. Then, by imposing relationships of main parameters to body size, i.e. allometric scaling, we derive a general solution to the size-scaling maximum and minimum expected density under plausible scenarios. The scaling of maximum population density is consistent with the literature, but we also provide novel predictions on the scaling of the lower limit to population density, a critical value for conservation science. The resulting framework is general and yields results that increase our current understanding of how complex demographic processes can be linked to ubiquitous ecological patterns.en
dc.description.affiliationInstitute of Theoretical Physics São Paulo State University, R. Dr. Bento Teobaldo Ferraz, 271, SP
dc.description.affiliationPostgraduate Program in Computational Modeling Federal University of Juiz de Fora, R. José Lourenço Kelmer, MG
dc.description.affiliationEcology Department São Paulo University, Rua do Matão, 321, SP
dc.description.affiliationFaculty of Sciences University of the Republic, Iguá 4225
dc.description.affiliationModelización Estadística de Datos e Inteligencia Artificial- MEDIA Centro Universitario Regional Este- CURE, Ruta 9 km 210
dc.description.affiliationUnespInstitute of Theoretical Physics São Paulo State University, R. Dr. Bento Teobaldo Ferraz, 271, SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipAgencia Nacional de Investigación e Innovación
dc.description.sponsorshipIdFAPESP: 2016/01343-7
dc.description.sponsorshipIdAgencia Nacional de Investigación e Innovación: FCE 3 2020 1 162710
dc.identifierhttp://dx.doi.org/10.1007/s00285-023-02012-5
dc.identifier.citationJournal of Mathematical Biology, v. 87, n. 6, 2023.
dc.identifier.doi10.1007/s00285-023-02012-5
dc.identifier.issn1432-1416
dc.identifier.issn0303-6812
dc.identifier.scopus2-s2.0-85175787112
dc.identifier.urihttps://hdl.handle.net/11449/301199
dc.language.isoeng
dc.relation.ispartofJournal of Mathematical Biology
dc.sourceScopus
dc.subjectAllee effect
dc.subjectAllometric scaling
dc.subjectCoexistence
dc.subjectLotka–Volterra competition model
dc.subjectSize–density relationship
dc.subjectStability
dc.titleLotka–Volterra model with Allee effect: equilibria, coexistence and size scaling of maximum and minimum abundanceen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-1989-8899[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica, São Paulopt

Arquivos