A multi-modal approach for mixed-frequency time series forecasting
| dc.contributor.author | Filho, Leopoldo Lusquino [UNESP] | |
| dc.contributor.author | de Oliveira Werneck, Rafael | |
| dc.contributor.author | Castro, Manuel | |
| dc.contributor.author | Ribeiro Mendes Júnior, Pedro | |
| dc.contributor.author | Lustosa, Augusto | |
| dc.contributor.author | Zampieri, Marcelo | |
| dc.contributor.author | Linares, Oscar | |
| dc.contributor.author | Moura, Renato | |
| dc.contributor.author | Morais, Elayne | |
| dc.contributor.author | Amaral, Murilo | |
| dc.contributor.author | Salavati, Soroor | |
| dc.contributor.author | Loomba, Ashish | |
| dc.contributor.author | Esmin, Ahmed | |
| dc.contributor.author | Gonçalves, Maiara | |
| dc.contributor.author | Schiozer, Denis José | |
| dc.contributor.author | Ferreira, Alexandre | |
| dc.contributor.author | Davólio, Alessandra | |
| dc.contributor.author | Rocha, Anderson | |
| dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Universidade Federal de Lavras (UFLA) | |
| dc.date.accessioned | 2025-04-29T20:06:14Z | |
| dc.date.issued | 2024-12-01 | |
| dc.description.abstract | This study proposes a novel multimodal approach for mixed-frequency time series forecasting in the oil industry, enabling the use of high-frequency (HF) data in their original frequency. We specifically address the challenge of integrating HF data streams, such as pressure and temperature measurements, with daily time series without introducing noise. Our approach was compared with existing econometric regression model mixed-data sampling (MIDAS) and with the data-driven models N-HiTS and a GRU-based network, across short-, medium-, and long-term prediction horizons. Additionally, we validated the proposed method on datasets from other domains beyond the oil industry. The experimental results indicate that our multimodal approach significantly improves long-term prediction accuracy. | en |
| dc.description.affiliation | Artificial Intelligence Lab. (Recod.ai) Institute of Computing Universidade Estadual de Campinas - UNICAMP, SP | |
| dc.description.affiliation | Institute of Science and Technology São Paulo State University - UNESP, SP | |
| dc.description.affiliation | Center for Petroleum Studies (CEPETRO) Universidade Estadual de Campinas - UNICAMP, SP | |
| dc.description.affiliation | Department of Computer Science Federal University of Lavras - UFLA, MG | |
| dc.description.affiliation | School of Mechanical Engineering Universidade Estadual de Campinas - UNICAMP, SP | |
| dc.description.affiliationUnesp | Institute of Science and Technology São Paulo State University - UNESP, SP | |
| dc.description.sponsorship | Shell Brasil | |
| dc.format.extent | 21581-21605 | |
| dc.identifier | http://dx.doi.org/10.1007/s00521-024-10305-z | |
| dc.identifier.citation | Neural Computing and Applications, v. 36, n. 34, p. 21581-21605, 2024. | |
| dc.identifier.doi | 10.1007/s00521-024-10305-z | |
| dc.identifier.issn | 1433-3058 | |
| dc.identifier.issn | 0941-0643 | |
| dc.identifier.scopus | 2-s2.0-85203079194 | |
| dc.identifier.uri | https://hdl.handle.net/11449/306430 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Neural Computing and Applications | |
| dc.source | Scopus | |
| dc.subject | Forecasting | |
| dc.subject | Mixed-frequency time series | |
| dc.subject | Multimodal learning | |
| dc.subject | Pre-salt oil field | |
| dc.title | A multi-modal approach for mixed-frequency time series forecasting | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0002-8283-3764[1] |
