Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

A multi-modal approach for mixed-frequency time series forecasting

dc.contributor.authorFilho, Leopoldo Lusquino [UNESP]
dc.contributor.authorde Oliveira Werneck, Rafael
dc.contributor.authorCastro, Manuel
dc.contributor.authorRibeiro Mendes Júnior, Pedro
dc.contributor.authorLustosa, Augusto
dc.contributor.authorZampieri, Marcelo
dc.contributor.authorLinares, Oscar
dc.contributor.authorMoura, Renato
dc.contributor.authorMorais, Elayne
dc.contributor.authorAmaral, Murilo
dc.contributor.authorSalavati, Soroor
dc.contributor.authorLoomba, Ashish
dc.contributor.authorEsmin, Ahmed
dc.contributor.authorGonçalves, Maiara
dc.contributor.authorSchiozer, Denis José
dc.contributor.authorFerreira, Alexandre
dc.contributor.authorDavólio, Alessandra
dc.contributor.authorRocha, Anderson
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)
dc.date.accessioned2025-04-29T20:06:14Z
dc.date.issued2024-12-01
dc.description.abstractThis study proposes a novel multimodal approach for mixed-frequency time series forecasting in the oil industry, enabling the use of high-frequency (HF) data in their original frequency. We specifically address the challenge of integrating HF data streams, such as pressure and temperature measurements, with daily time series without introducing noise. Our approach was compared with existing econometric regression model mixed-data sampling (MIDAS) and with the data-driven models N-HiTS and a GRU-based network, across short-, medium-, and long-term prediction horizons. Additionally, we validated the proposed method on datasets from other domains beyond the oil industry. The experimental results indicate that our multimodal approach significantly improves long-term prediction accuracy.en
dc.description.affiliationArtificial Intelligence Lab. (Recod.ai) Institute of Computing Universidade Estadual de Campinas - UNICAMP, SP
dc.description.affiliationInstitute of Science and Technology São Paulo State University - UNESP, SP
dc.description.affiliationCenter for Petroleum Studies (CEPETRO) Universidade Estadual de Campinas - UNICAMP, SP
dc.description.affiliationDepartment of Computer Science Federal University of Lavras - UFLA, MG
dc.description.affiliationSchool of Mechanical Engineering Universidade Estadual de Campinas - UNICAMP, SP
dc.description.affiliationUnespInstitute of Science and Technology São Paulo State University - UNESP, SP
dc.description.sponsorshipShell Brasil
dc.format.extent21581-21605
dc.identifierhttp://dx.doi.org/10.1007/s00521-024-10305-z
dc.identifier.citationNeural Computing and Applications, v. 36, n. 34, p. 21581-21605, 2024.
dc.identifier.doi10.1007/s00521-024-10305-z
dc.identifier.issn1433-3058
dc.identifier.issn0941-0643
dc.identifier.scopus2-s2.0-85203079194
dc.identifier.urihttps://hdl.handle.net/11449/306430
dc.language.isoeng
dc.relation.ispartofNeural Computing and Applications
dc.sourceScopus
dc.subjectForecasting
dc.subjectMixed-frequency time series
dc.subjectMultimodal learning
dc.subjectPre-salt oil field
dc.titleA multi-modal approach for mixed-frequency time series forecastingen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-8283-3764[1]

Arquivos

Coleções