Logo do repositório

Fast Optimum-Path Forest Classification on Graphics Processors

dc.contributor.authorRomero, Marcos V. T. [UNESP]
dc.contributor.authorIwashita, Adriana S. [UNESP]
dc.contributor.authorPapa, Luciene P.
dc.contributor.authorSouza, Andre N. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorBattiato, S.
dc.contributor.authorBraz, J.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionSouthwest Paulista Coll
dc.date.accessioned2019-10-04T12:30:16Z
dc.date.available2019-10-04T12:30:16Z
dc.date.issued2014-01-01
dc.description.abstractSome pattern recognition techniques may present a high computational cost for learning samples' behaviour. The Optimum-Path Forest (OPF) classifier has been recently developed in order to overcome such drawbacks. Although it can achieve faster training steps when compared to some state-of-art techniques, OPF can be slower for testing in some situations. Therefore, we propose in this paper an implementation in graphics cards of the OPF classification, which showed to be more efficient than traditional OPF with similar accuracies.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationSouthwest Paulista Coll, Avare, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Elect Engn, Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Elect Engn, Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2009/16206-1
dc.description.sponsorshipIdFAPESP: 2010/12697-8
dc.description.sponsorshipIdFAPESP: 2011/08348-0
dc.description.sponsorshipIdCNPq: 470571/2013-6
dc.description.sponsorshipIdCNPq: 303182/2011-3
dc.format.extent627-631
dc.identifier.citationProceedings Of The 2014 9th International Conference On Computer Vision, Theory And Applications (visapp 2014), Vol 2. New York: Ieee, p. 627-631, 2014.
dc.identifier.urihttp://hdl.handle.net/11449/184817
dc.identifier.wosWOS:000412737200078
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartofProceedings Of The 2014 9th International Conference On Computer Vision, Theory And Applications (visapp 2014), Vol 2
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectOptimum-Path Forest
dc.subjectGraphics Processing Unit
dc.titleFast Optimum-Path Forest Classification on Graphics Processorsen
dc.typeTrabalho apresentado em eventopt
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication4c2e649a-dc0d-49ec-bc7f-f5f46e998cd2
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.lattes8212775960494686[4]
unesp.author.orcid0000-0002-8617-5404[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos