Logo do repositório
 

Learning to classify seismic images with deep optimum-path forest

dc.contributor.authorAfonso, Luis
dc.contributor.authorVidal, Alexandre
dc.contributor.authorKuroda, Michelle
dc.contributor.authorFalcao, Alexandre Xavier
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T22:42:10Z
dc.date.available2022-04-29T22:42:10Z
dc.date.issued2017-01-10
dc.description.abstractDue to the lack of labeled information, clustering techniques have been paramount in the last years once more. In this paper, inspired by the deep learning phenomenon, we presented a multi-scale approach to obtain more refined cluster representations of the Optimum-Path Forest (OPF) classifier, which has obtained promising results in a number of works in the literature. Here, we propose to fill a gap in OPF-based works by using a deep-driven representation of the feature space. Additionally, we validated the work in the context of high resolution seismic images aiming at petroleum exploration, as well as in general-purpose applications. Quantitative and qualitative analysis are conducted in order to assess the robustness of the proposed approach.en
dc.description.affiliationDepartment of Computing Federal University of São Carlos
dc.description.affiliationInstitute of Geology University of Campinas
dc.description.affiliationInstitute of Computing University of Campinas
dc.description.affiliationDepartment of Computing São Paulo State University
dc.description.affiliationUnespDepartment of Computing São Paulo State University
dc.format.extent401-407
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2016.062
dc.identifier.citationProceedings - 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2016, p. 401-407.
dc.identifier.doi10.1109/SIBGRAPI.2016.062
dc.identifier.scopus2-s2.0-85013757650
dc.identifier.urihttp://hdl.handle.net/11449/232574
dc.language.isoeng
dc.relation.ispartofProceedings - 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2016
dc.sourceScopus
dc.subjectDeep Representations
dc.subjectImage Clustering
dc.subjectOptimum-Path Forest
dc.subjectSeismic Images
dc.titleLearning to classify seismic images with deep optimum-path foresten
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos