A novel GLUT-4 electrochemical immunosensor based on a poly(thionine)-gold nanoparticle nanocomposite: Combining complex capacitance and dissolved oxygen to obtain an analytical signal
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Detection of glucose transporter 4 (GLUT4) is essential for understanding various physiological and pathological processes. This work reports the development of a novel electrochemical immunosensor for the direct detection of GLUT4, employing dissolved oxygen as a redox probe. This molecular oxygen-sensitive response is mediated by a redox-conductive polymer based on thionine. The sensor platform was fabricated via a one-step electropolymerization of thionine and gold nanoparticles (AuNPs) onto a platinum screen-printed electrode (Olean-Oliveira et al., 2022a). The immunosensor was then constructed by physical adsorption of a GLUT4 antibody onto the poly(thionine)-AuNP composite surface. This label-free approach eliminates the need for secondary antibodies or enzymes. The immunosensor performance was evaluated using electrochemical impedance spectroscopy (EIS). The sensing mechanism relies on impedance changes; increasing GLUT4 concentrations lead to increased impedance due to enhanced surface blocking upon GLUT4-antibody binding. This interaction impedes oxygen diffusion to the polymer redox sites, resulting in increased electrical resistance. Analysis of the redox capacitance as a function of frequency demonstrates a decrease in the capacitive arc with increasing GLUT4 concentration.
Descrição
Palavras-chave
Anti-GLUT4, Electrochemical impedance spectroscopy, Glucose transporters, Gold nanoparticle polymer, Immunosensor, Physiological protocol
Idioma
Inglês
Citação
Biosensors and Bioelectronics, v. 275.





