Hyperbolicity of renormalization for dissipative gap mappings
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
A gap mapping is a discontinuous interval mapping with two strictly increasing branches that have a gap between their ranges. They are one-dimensional dynamical systems, which arise in the study of certain higher dimensional flows, for example the Lorenz flow and the Cherry flow. In this paper, we prove hyperbolicity of renormalization acting on dissipative gap mappings, and show that the topological conjugacy classes of infinitely renormalizable gap mappings are manifolds.
Descrição
Palavras-chave
gap mappings, hyperbolicity of renormalization, Lorenz and Cherry flows, Lorenz mappings
Idioma
Inglês
Citação
Ergodic Theory and Dynamical Systems.