Logo do repositório
 

Hyperbolicity of renormalization for dissipative gap mappings

dc.contributor.authorClark, Trevor
dc.contributor.authorGouveia, Márcio [UNESP]
dc.contributor.institutionImperial College
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:44:12Z
dc.date.available2022-04-28T19:44:12Z
dc.date.issued2021-01-01
dc.description.abstractA gap mapping is a discontinuous interval mapping with two strictly increasing branches that have a gap between their ranges. They are one-dimensional dynamical systems, which arise in the study of certain higher dimensional flows, for example the Lorenz flow and the Cherry flow. In this paper, we prove hyperbolicity of renormalization acting on dissipative gap mappings, and show that the topological conjugacy classes of infinitely renormalizable gap mappings are manifolds.en
dc.description.affiliationDepartment of Mathematics Imperial College
dc.description.affiliationIBILCE-UNESP, São Paulo
dc.description.affiliationUnespIBILCE-UNESP, São Paulo
dc.identifierhttp://dx.doi.org/10.1017/etds.2021.88
dc.identifier.citationErgodic Theory and Dynamical Systems.
dc.identifier.doi10.1017/etds.2021.88
dc.identifier.issn1469-4417
dc.identifier.issn0143-3857
dc.identifier.scopus2-s2.0-85114292880
dc.identifier.urihttp://hdl.handle.net/11449/222353
dc.language.isoeng
dc.relation.ispartofErgodic Theory and Dynamical Systems
dc.sourceScopus
dc.subjectgap mappings
dc.subjecthyperbolicity of renormalization
dc.subjectLorenz and Cherry flows
dc.subjectLorenz mappings
dc.titleHyperbolicity of renormalization for dissipative gap mappingsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos