Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Structural, mechanical, and electronic properties of armchair and zigzag germanene nanotubes

dc.contributor.authorLaranjeira, Jose A.S. [UNESP]
dc.contributor.authorDenis, Pablo A.
dc.contributor.authorSambrano, Julio R. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUDELAR
dc.date.accessioned2025-04-29T20:08:54Z
dc.date.issued2024-04-01
dc.description.abstractThis computational study investigated germanene nanotubes (GeNTs) using density functional theory (DFT) simulations to comprehend their structural, mechanical, and electronic properties. The analysis includes armchairs and zigzag GeNTs with diameters from ∼7 to ∼221 Å. It explores their relative stabilities, band structures, density of states, effective mass carriers, and piezoelectric and elastic constants. As a result, it is highlighted that smaller nanotube diameters exhibit higher instability than larger ones due to increased structural strain produced by higher curvature. An intriguing behavior is observed for diameters greater than 25 Å, with negative strain energies. The quantum confinement effect significantly influences the electronic properties of GeNTs, leading to increased band gap energy for smaller nanotubes. The band gap energy of armchair nanotubes has a decreasing behavior as the diameter increases. In contrast, for zigzag nanotubes, the band gap energy increases to ∼13 Å diameter and then decreases, reaching a band gap energy of 0.08 eV. Regarding mechanical properties, smaller GeNTs exhibit significantly lower elastic constants (C11). As the diameter increases, C11 values converge around 114 GPa for both armchair and zigzag GeNTs. Only the zigzag GeNTs exhibit piezoelectricity. Carrier effective masses decrease with increasing diameter, enhancing carrier mobility for larger-diameter GeNTs. The herein-reported findings provide valuable insights into the properties of germanene nanotubes, demonstrating their promising potential for nanoscale device applications and inspiring further research and synthesis of germanene-related systems.en
dc.description.affiliationModeling and Molecular Simulation Group Sao Paulo State University (UNESP), SP
dc.description.affiliationComputational Nanotechnology DETEMA Facultad de Química UDELAR, CC 1157
dc.description.affiliationUnespModeling and Molecular Simulation Group Sao Paulo State University (UNESP), SP
dc.description.sponsorshipAgencia Nacional de Investigación e Innovación
dc.description.sponsorshipComisión Sectorial de Investigación Científica
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 20/01144-0
dc.description.sponsorshipIdFAPESP: 22/03959–6
dc.description.sponsorshipIdCNPq: 307213/2021–8
dc.description.sponsorshipIdCAPES: 88887.467334/2019–00
dc.identifierhttp://dx.doi.org/10.1016/j.physe.2023.115896
dc.identifier.citationPhysica E: Low-Dimensional Systems and Nanostructures, v. 158.
dc.identifier.doi10.1016/j.physe.2023.115896
dc.identifier.issn1386-9477
dc.identifier.scopus2-s2.0-85181749941
dc.identifier.urihttps://hdl.handle.net/11449/307289
dc.language.isoeng
dc.relation.ispartofPhysica E: Low-Dimensional Systems and Nanostructures
dc.sourceScopus
dc.subjectGermanene
dc.subjectGraphene-like
dc.subjectNanotube
dc.subjectPiezoelectricity
dc.subjectStrain energy
dc.titleStructural, mechanical, and electronic properties of armchair and zigzag germanene nanotubesen
dc.typeArtigopt
dspace.entity.typePublication

Arquivos

Coleções