Logotipo do repositório
 

Publicação:
FEMa-FS: Finite Element Machines for Feature Selection

dc.contributor.authorBiaggi, Lucas [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorCosta, Kelton A. P [UNESP]
dc.contributor.authorPereira, Danillo R.
dc.contributor.authorPassos, Leandro A.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionAnalytics2Go
dc.contributor.institutionUniversity of Wolverhampton
dc.date.accessioned2023-07-29T15:41:51Z
dc.date.available2023-07-29T15:41:51Z
dc.date.issued2022-01-01
dc.description.abstractIdentifying anomalies has become one of the primary strategies towards security and protection procedures in computer networks. In this context, machine learning-based methods emerge as an elegant solution to identify such scenarios and learn irrelevant information so that a reduction in the identification time and possible gain in accuracy can be obtained. This paper proposes a novel feature selection approach called Finite Element Machines for Feature Selection (FEMa-FS), which uses the framework of finite elements to identify the most relevant information from a given dataset. Although FEMa-FS can be applied to any application domain, it has been evaluated in the context of anomaly detection in computer networks. The outcomes over two datasets showed promising results.en
dc.description.affiliationSão Paulo State University
dc.description.affiliationAnalytics2Go, Álvares Machado
dc.description.affiliationUniversity of Wolverhampton
dc.description.affiliationUnespSão Paulo State University
dc.format.extent1784-1791
dc.identifierhttp://dx.doi.org/10.1109/ICPR56361.2022.9956112
dc.identifier.citationProceedings - International Conference on Pattern Recognition, v. 2022-August, p. 1784-1791.
dc.identifier.doi10.1109/ICPR56361.2022.9956112
dc.identifier.issn1051-4651
dc.identifier.scopus2-s2.0-85143586814
dc.identifier.urihttp://hdl.handle.net/11449/249455
dc.language.isoeng
dc.relation.ispartofProceedings - International Conference on Pattern Recognition
dc.sourceScopus
dc.subjectComputer Networks Security
dc.subjectFeature Selection
dc.subjectFinite Element Method
dc.subjectMachine Learning
dc.titleFEMa-FS: Finite Element Machines for Feature Selectionen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos