Publicação: FEMa-FS: Finite Element Machines for Feature Selection
dc.contributor.author | Biaggi, Lucas [UNESP] | |
dc.contributor.author | Papa, Joao P. [UNESP] | |
dc.contributor.author | Costa, Kelton A. P [UNESP] | |
dc.contributor.author | Pereira, Danillo R. | |
dc.contributor.author | Passos, Leandro A. | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Analytics2Go | |
dc.contributor.institution | University of Wolverhampton | |
dc.date.accessioned | 2023-07-29T15:41:51Z | |
dc.date.available | 2023-07-29T15:41:51Z | |
dc.date.issued | 2022-01-01 | |
dc.description.abstract | Identifying anomalies has become one of the primary strategies towards security and protection procedures in computer networks. In this context, machine learning-based methods emerge as an elegant solution to identify such scenarios and learn irrelevant information so that a reduction in the identification time and possible gain in accuracy can be obtained. This paper proposes a novel feature selection approach called Finite Element Machines for Feature Selection (FEMa-FS), which uses the framework of finite elements to identify the most relevant information from a given dataset. Although FEMa-FS can be applied to any application domain, it has been evaluated in the context of anomaly detection in computer networks. The outcomes over two datasets showed promising results. | en |
dc.description.affiliation | São Paulo State University | |
dc.description.affiliation | Analytics2Go, Álvares Machado | |
dc.description.affiliation | University of Wolverhampton | |
dc.description.affiliationUnesp | São Paulo State University | |
dc.format.extent | 1784-1791 | |
dc.identifier | http://dx.doi.org/10.1109/ICPR56361.2022.9956112 | |
dc.identifier.citation | Proceedings - International Conference on Pattern Recognition, v. 2022-August, p. 1784-1791. | |
dc.identifier.doi | 10.1109/ICPR56361.2022.9956112 | |
dc.identifier.issn | 1051-4651 | |
dc.identifier.scopus | 2-s2.0-85143586814 | |
dc.identifier.uri | http://hdl.handle.net/11449/249455 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings - International Conference on Pattern Recognition | |
dc.source | Scopus | |
dc.subject | Computer Networks Security | |
dc.subject | Feature Selection | |
dc.subject | Finite Element Method | |
dc.subject | Machine Learning | |
dc.title | FEMa-FS: Finite Element Machines for Feature Selection | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |