Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Multi-chronometer thermochronological modelling of the Late Neoproterozoic to recent t-T-evolution of the SE coastal region of Brazil

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

South-eastern Brazil is as an important geological archive for understanding and reconstructing various plate tectonic stages of the Wilson Cycle. In the Neoproterozoic, the area of the today's South Atlantic passive continental margin (SAPCM: e.g. between Sao Paulo and Laguna) of south-eastern Brazil underwent subduction, followed by the collision of the contemporary plates of South America and Africa creating a Neoproterozoic orogeny within the supercontinent Gondwana. During the Palaeozoic and Lower Mesozoic (stage 1), the future SAPCM, as an intracratonic area, experienced erosion, denudation of the Neoproterozoic mobile belts (Pan African/Brasiliano orogeny), and large basin formation (Parana Basin) (stage 2). Possibly plume-driven pre-to syn-rift (embryonic), ocean spreading (juvenile), and post-break up (mature) processes led to the recent evolution of the SAPCM since the Upper Mesozoic (stage 3). For the first time, this research aims to reconstruct the syn-to post-orogenic t-T-evolution of Neoproterozoic basement rocks of the SE coastal region of Brazil covering the entire geological evolution since the Late Neoproterozoic. Therefore, this study uses geochronological and thermochronological data combined with numerical modelling. This includes published geochronological data of Neoproterozoic basement samples such as U-Pb, Sm-Nd and Rb-Sr analyses, and low temperature thermochronology (LTT) data revealed by K/Ar, (40)AR/Ar-39 analyses. To this existing LTT data set, we report new apatite (AFT) and zircon (ZFT) fission track, and (U-Th-Sm)/He (AHe, ZHe) data. Numerical modelling of that LTT data attached to the existing geochronological data indicates the following evolution: -Stage 1: In the central part of the future SAPCM, the Pan African/Brasiliano post-orogenic cooling and exhumation (uplift and erosion of Neoproterozoic rocks to the surface) history occurs in three phases: (i) rapid Late Neoproterozoic exhumation, (ii) a period of relative thermal stability (temperatures of about 200-300 degrees C) in which rocks reside at upper crust levels during the Early Cambrian to Devonian, and (iii) a second rapid exhumation phase moving the Neoproterozoic basement rocks to the surface during the Devonian. The northern and southern parts indicate a distinct post-orogenic exhumation suggesting faster cooling and exhumation from the Late Neoproterozoic to Devonian/Carboniferous than in the central section. -Stage 2: A phase of subsidence leading to the formation of the Parana Basin followed by pre-to syn-rift processes and the emplacement of the Parana-Etendeka flood basalts. -Stage 3: Post-South Atlantic break up processes, such as erosion and exhumation.

Descrição

Palavras-chave

Idioma

Inglês

Citação

Journal Of South American Earth Sciences. Oxford: Pergamon-elsevier Science Ltd, v. 92, p. 77-94, 2019.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso