Publicação: Piezoelectric, elastic, Infrared and Raman behavior of ZnO wurtzite under pressure from periodic DFT calculations
Carregando...
Arquivos
Data
2017-03-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
The influence of pressure on elastic, piezoelectric (total and clamped-ion contribution), dielectric constants, Infrared and Raman spectra, and topological properties of ZnO wurtzite structure was carried out via periodic DFT/B3LYP methodology. The computational simulation indicated that, as the pressure increases, the structure becomes more rigid and an enhancement of the direct piezoelectric response along the z-direction was observed. Bader topological analysis and Hirshfeld-I charges showed a slight increase in the ionic character of Zn–O bond. Besides that, changes in the piezoelectric response are mainly due to the approach between Zn and O than to charge transfer phenomena among the two atoms. Pressure induces a sensitive displacement in the Infrared and Raman frequencies and a decrease of the E2 mode. Nevertheless, the increase of pressure does not lead to a change in the semiconductor character, which proves that the ZnO support high pressures and can be applied in different devices.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Chemical Physics, v. 485-486, p. 98-107.