Publicação: Ethanol detection using composite based on reduced graphene oxide and CuO hierarchical structure under wet atmosphere
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Semiconductor metal oxides have been used for detecting volatile organic compounds (VOCs). However, these materials present a poor performance in humidity. Here, we report the effect of reduced graphene oxide (RGO) on the ethanol-sensing of CuO under dry and in the relative humidity range of 36–90%. For this purpose, RGO-CuO composites and CuO were synthesized by a one-step microwave-assisted synthesis. The VOCs sensing were performed at the range of 150–350 °C to acetone, benzene, ethanol, methanol, and m-xylene. The RGO-CuO composites exhibited enhanced ethanol sensing when compared with pure CuO at the optimal operating temperature of 250 °C. In addition, the optimal RGO content resulted in an enhanced selectivity and high sensitivity compared to pure CuO. The enhanced ethanol sensing performance of RGO-CuO was attributed to the RGO/CuO heterojunction. Thus, the combination of RGO and p-type CuO semiconductor can be a promising for VOCs detection under wet conditions.
Descrição
Palavras-chave
Graphene-based composite, p-type SMO, Volatile organic compounds, Water cross-interference
Idioma
Inglês
Como citar
Materials Science and Engineering B: Solid-State Materials for Advanced Technology, v. 248.