Adiabatic processes like isothermal processes
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The objective of this work is to show that adiabatic processes can be very similar to isothermal ones. First, we show that the criteria for the compatibility of linear-response theory with the second law of thermodynamics for thermally isolated systems are the same as those for systems performing isothermal processes. Motivated by such a result, we explore the thermodynamic consequences of the time-average excess work, observing an unexpected existence of a well-defined relaxation time for thermally isolated systems that obeys the second law of thermodynamics. This is justified by recognizing that such systems, in the usual sense, present random relaxation time, which can be averagedby taking the time average of the relaxation function. Such a proceeding is very similar to what happens in isothermal processes, where a stochastic average must be done on the relaxation function to have a well-defined relaxation time. In the end, we analyze the Landau-Zener model from this new point of view, discussing the construction of slowly-varying processes from linear-response theory and observing negative entropy production rates for nonmonotonic and rapid protocols.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Physical Review E, v. 107, n. 6, 2023.




