Evaluation of force systems generated by Memory Titanol® springs with different preactivation bends
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Objective: This study evaluated the force system generated by the Memory Titanol® spring (MTS) with different preactivation bends using an orthodontic force tester (OFT). Methods: Three preactivations were tested using a 0.017 × 0.022-in stainless steel (SS) wire and a 0.018 × 0.025-in NiTi segment, with an activation of 30º in the posterior segment (β), with 0º (Group 1 [G1]), 45º (Group 2 [G2]), and 60º (Group 3 [G3]) in the anterior segment (α). Results: The molars showed extrusion values of −1.33 N for G1 and −0.78 N for G2, and an intrusion value of 0.33 N for G3. The force in the premolars was intrusive with a variation of 1.34 N for G1 and 0.77 N for G2; and extrusive with a variation of −0.31 N for G3. Regarding the upright moment (Ty) of the molar, a distal moment was observed with values of 53.45 N.mm for G1 and 19.87 N.mm for G2, while G3 presented a mesial moment of −6.23 N.mm. G1, G2, and G3 all exhibited distal premolar moments (Ty) of 3.58, 2.45, and 0.68 N.mm, respectively. Conclusions: The tested preactivations exerted an extrusive force in G1 and G2 and an intrusive force in G3 during molar vertical movement. The premolar region in G1 and G2 showed intrusive force and distal moment.
Descrição
Palavras-chave
Biomechanical phenomena, Orthodontics, corrective, Tooth movement techniques
Idioma
Inglês
Citação
Dental Press Journal of Orthodontics, v. 29, n. 5, 2024.





