Logotipo do repositório
 

Publicação:
Deep Boltzmann Machines for Robust Fingerprint Spoofing Attack Detection

dc.contributor.authorSouza, Gustavo B.
dc.contributor.authorSantos, Daniel F. S. [UNESP]
dc.contributor.authorPires, Rafael G.
dc.contributor.authorMarana, Aparecido N. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-29T09:28:10Z
dc.date.available2018-11-29T09:28:10Z
dc.date.issued2017-01-01
dc.description.abstractBiometric systems present some important advantages over the traditional knowledge- or possess-oriented identification systems, such as a guarantee of authenticity and convenience. However, due to their widespread usage in our society and despite the difficulty in attacking them, nowadays criminals are already developing techniques to simulate physical, physiological and behavioral traits of valid users, the so-called spoofing attacks. In this sense, new countermeasures must be developed and integrated with the traditional biometric systems to prevent such frauds. In this work, we present a novel robust and efficient approach to detect spoofing attacks in biometric systems (fingerprint-based ones) using a deep learning-based model: the Deep Boltzmann Machine (DBM). By extracting and working with high-level features from the original data, DBM can deal with complex patterns and work with features that can not be easily forged. The results show the proposed approach outperforms other state-of-the-art techniques, presenting high accuracy in terms of attack detection and allowing working with less labeled data.en
dc.description.affiliationFed Univ Sao Carlos UFSCar, BR-13565905 Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ UNESP, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent1863-1870
dc.identifier.citation2017 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, p. 1863-1870, 2017.
dc.identifier.fileWOS000426968702015.pdf
dc.identifier.issn2161-4393
dc.identifier.urihttp://hdl.handle.net/11449/166040
dc.identifier.wosWOS:000426968702015
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2017 International Joint Conference On Neural Networks (ijcnn)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleDeep Boltzmann Machines for Robust Fingerprint Spoofing Attack Detectionen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.author.lattes6027713750942689[4]
unesp.author.orcid0000-0003-4861-7061[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000426968702015.pdf
Tamanho:
1.05 MB
Formato:
Adobe Portable Document Format
Descrição: