Publicação:
A Fast Large Scale Iris Database Classification with Optimum-Path Forest Technique: A Case Study

dc.contributor.authorAfonso, Luis C. S. [UNESP]
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorMarana, Aparecido Nilceu [UNESP]
dc.contributor.authorPoursaberi, Ahmad
dc.contributor.authorYanushkevich, Svetlana N.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:33:33Z
dc.date.available2014-05-20T15:33:33Z
dc.date.issued2012-01-01
dc.description.abstractMajority of biometric researchers focus on the accuracy of matching using biometrics databases, including iris databases, while the scalability and speed issues have been neglected. In the applications such as identification in airports and borders, it is critical for the identification system to have low-time response. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. This paper investigates several classifiers, which are widely used in iris recognition papers, and the response time along with accuracy. The existing Gauss-Laguerre Wavelet based iris coding scheme, which shows perfect discrimination with rotary Hamming distance classifier, is used for iris coding. The performance of classifiers is compared using small, medium, and large scale databases. Such comparison shows that OPF has faster response for large scale database, thus performing better than more accurate but slower Bayesian classifier.en
dc.description.affiliationSão Paulo State Univ, Fac Sci, Dept Comp, São Paulo, Brazil
dc.description.affiliationUnespSão Paulo State Univ, Fac Sci, Dept Comp, São Paulo, Brazil
dc.format.extent5
dc.identifierhttp://dx.doi.org/10.1109/IJCNN.2012.6252660
dc.identifier.citation2012 International Joint Conference on Neural Networks (ijcnn). New York: IEEE, p. 5, 2012.
dc.identifier.doi10.1109/IJCNN.2012.6252660
dc.identifier.issn1098-7576
dc.identifier.lattes9039182932747194
dc.identifier.lattes6027713750942689
dc.identifier.scopus2-s2.0-84865076487
dc.identifier.urihttp://hdl.handle.net/11449/42141
dc.identifier.wosWOS:000309341302019
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartof2012 International Joint Conference on Neural Networks (ijcnn)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleA Fast Large Scale Iris Database Classification with Optimum-Path Forest Technique: A Case Studyen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderIEEE
dspace.entity.typePublication
unesp.author.lattes9039182932747194
unesp.author.lattes6027713750942689[3]
unesp.author.orcid0000-0003-4861-7061[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: