Publicação: A Fast Large Scale Iris Database Classification with Optimum-Path Forest Technique: A Case Study
dc.contributor.author | Afonso, Luis C. S. [UNESP] | |
dc.contributor.author | Papa, João Paulo [UNESP] | |
dc.contributor.author | Marana, Aparecido Nilceu [UNESP] | |
dc.contributor.author | Poursaberi, Ahmad | |
dc.contributor.author | Yanushkevich, Svetlana N. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-20T15:33:33Z | |
dc.date.available | 2014-05-20T15:33:33Z | |
dc.date.issued | 2012-01-01 | |
dc.description.abstract | Majority of biometric researchers focus on the accuracy of matching using biometrics databases, including iris databases, while the scalability and speed issues have been neglected. In the applications such as identification in airports and borders, it is critical for the identification system to have low-time response. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. This paper investigates several classifiers, which are widely used in iris recognition papers, and the response time along with accuracy. The existing Gauss-Laguerre Wavelet based iris coding scheme, which shows perfect discrimination with rotary Hamming distance classifier, is used for iris coding. The performance of classifiers is compared using small, medium, and large scale databases. Such comparison shows that OPF has faster response for large scale database, thus performing better than more accurate but slower Bayesian classifier. | en |
dc.description.affiliation | São Paulo State Univ, Fac Sci, Dept Comp, São Paulo, Brazil | |
dc.description.affiliationUnesp | São Paulo State Univ, Fac Sci, Dept Comp, São Paulo, Brazil | |
dc.format.extent | 5 | |
dc.identifier | http://dx.doi.org/10.1109/IJCNN.2012.6252660 | |
dc.identifier.citation | 2012 International Joint Conference on Neural Networks (ijcnn). New York: IEEE, p. 5, 2012. | |
dc.identifier.doi | 10.1109/IJCNN.2012.6252660 | |
dc.identifier.issn | 1098-7576 | |
dc.identifier.lattes | 9039182932747194 | |
dc.identifier.lattes | 6027713750942689 | |
dc.identifier.scopus | 2-s2.0-84865076487 | |
dc.identifier.uri | http://hdl.handle.net/11449/42141 | |
dc.identifier.wos | WOS:000309341302019 | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | 2012 International Joint Conference on Neural Networks (ijcnn) | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.title | A Fast Large Scale Iris Database Classification with Optimum-Path Forest Technique: A Case Study | en |
dc.type | Trabalho apresentado em evento | |
dcterms.rightsHolder | IEEE | |
dspace.entity.type | Publication | |
unesp.author.lattes | 9039182932747194 | |
unesp.author.lattes | 6027713750942689[3] | |
unesp.author.orcid | 0000-0003-4861-7061[3] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
Arquivos
Licença do Pacote
1 - 2 de 2
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: