Logo do repositório

Advancing room temperature NO2 gas sensing performance through high-energy mechanical milling of Tin-dichalcogenides

dc.contributor.authorde Oliveira Melquíades, Miécio [UNESP]
dc.contributor.authorde Oliveira, Leonardo Soares
dc.contributor.authorda Silva, Ranilson Angelo [UNESP]
dc.contributor.authorOrlandi, Marcelo Ornaghi [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionScience and Technology of Amazonas (IFAM)
dc.contributor.institutionFederal University of Amazonas (UFAM)
dc.contributor.institutionTechnical University of Denmark
dc.date.accessioned2025-04-29T20:07:56Z
dc.date.issued2024-08-01
dc.description.abstractEco-friendly gas sensing devices with simple architecture, reduced cost, and high performance at room temperature are being sought to replace the traditional metallic oxide materials, aiming to address environmental concerns. Lamellae semiconducting materials have shown promising detection properties for this purpose. Here, we investigated the sensing response of SnS2, Sn(S0.5Se0.5)2, and SnSe2 tin-dichalcogenides prepared by high-energy mechanical milling. High RNO2/Rair response signals, from 102 to 106, for 2–100 ppm of NO2 were observed for temperatures between 30 °C and 300 °C. The materials were not sensitive to CO, while H2 detection could only be observed above 200 °C, implying high NO2 selectivity. Additionally, we investigated the influence of samples suspension in water and isopropanol on grain size and morphology. We found that isopropanol crystallizes amorphous selenium phase dispersed in the Sn-Se system and increase the agglomeration in the Sn(S0.5Se0.5)2 system. Deformed and defective particles were observed regardless the preparation methodology. This unique defect-rich morphology might increase surface reactivity for selective NO2 detection by physisorption, owing a high adsorption/desorption rate at room temperature.en
dc.description.affiliationUniversidade Estadual Paulista (Unesp), SP
dc.description.affiliationFederal Institute of Education Science and Technology of Amazonas (IFAM), Amazonas
dc.description.affiliationFederal University of Amazonas (UFAM), Amazonas
dc.description.affiliationDepartment of Physics Technical University of Denmark
dc.description.affiliationUnespUniversidade Estadual Paulista (Unesp), SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Amazonas
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFundação de Amparo à Pesquisa do Estado do Amazonas: 004/2019-CD/FAPEAM
dc.description.sponsorshipIdCAPES: 062.01112/2019
dc.description.sponsorshipIdFAPESP: 2017/26219–0
dc.description.sponsorshipIdCNPq: 305437/2018–6
dc.description.sponsorshipIdCNPq: 426490/2018–5
dc.description.sponsorshipIdCNPq: 443138/2016–8
dc.identifierhttp://dx.doi.org/10.1016/j.sna.2024.115421
dc.identifier.citationSensors and Actuators A: Physical, v. 373.
dc.identifier.doi10.1016/j.sna.2024.115421
dc.identifier.issn0924-4247
dc.identifier.scopus2-s2.0-85192462392
dc.identifier.urihttps://hdl.handle.net/11449/306933
dc.language.isoeng
dc.relation.ispartofSensors and Actuators A: Physical
dc.sourceScopus
dc.subjectGas sensing materials
dc.subjectHigh energy ball milling
dc.subjectHigh performance devices
dc.subjectPhysisorption mechanism
dc.subjectTin-dichalcogenides
dc.titleAdvancing room temperature NO2 gas sensing performance through high-energy mechanical milling of Tin-dichalcogenidesen
dc.typeArtigopt
dspace.entity.typePublication

Arquivos

Coleções