Publicação: Spatiotemporal CNNs for pornography detection in videos
dc.contributor.author | da Silva, Murilo Varges | |
dc.contributor.author | Marana, Aparecido Nilceu [UNESP] | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | IFSP - Federal Institute of Education of Sao Paulo | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2019-10-06T17:05:24Z | |
dc.date.available | 2019-10-06T17:05:24Z | |
dc.date.issued | 2019-01-01 | |
dc.description.abstract | With the increasing use of social networks and mobile devices, the number of videos posted on the Internet is growing exponentially. Among the inappropriate contents published on the Internet, pornography is one of the most worrying as it can be accessed by teens and children. Two spatiotemporal CNNs, VGG-C3D CNN and ResNet R (2+1) D CNN, were assessed for pornography detection in videos in the present study. Experimental results using the Pornography-800 dataset showed that these spatiotemporal CNNs performed better than some state-of-the-art methods based on bag of visual words and are competitive with other CNN-based approaches, reaching accuracy of 95.1%. | en |
dc.description.affiliation | UFSCar - Federal University of Sao Carlos | |
dc.description.affiliation | IFSP - Federal Institute of Education of Sao Paulo | |
dc.description.affiliation | UNESP - Sao Paulo State University | |
dc.description.affiliationUnesp | UNESP - Sao Paulo State University | |
dc.format.extent | 547-555 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-030-13469-3_64 | |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11401 LNCS, p. 547-555. | |
dc.identifier.doi | 10.1007/978-3-030-13469-3_64 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.scopus | 2-s2.0-85063041642 | |
dc.identifier.uri | http://hdl.handle.net/11449/190196 | |
dc.language.iso | eng | |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | 3D CNN | |
dc.subject | Pornography detection | |
dc.subject | Spatiotemporal CNN | |
dc.subject | Video classification | |
dc.title | Spatiotemporal CNNs for pornography detection in videos | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.author.lattes | 6027713750942689[2] | |
unesp.author.orcid | 0000-0002-2327-6806[1] | |
unesp.author.orcid | 0000-0003-4861-7061[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |