Logotipo do repositório
 

Publicação:
Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters

dc.contributor.authorWatanabe, Fernanda [UNESP]
dc.contributor.authorMishra, Deepak R.
dc.contributor.authorAstuti, Ike
dc.contributor.authorRodrigues, Thanan [UNESP]
dc.contributor.authorAlcantara, Enner [UNESP]
dc.contributor.authorImai, Nilton N. [UNESP]
dc.contributor.authorBarbosa, Claudio
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Georgia
dc.contributor.institutionNatl Inst Space Res
dc.date.accessioned2018-11-26T17:10:36Z
dc.date.available2018-11-26T17:10:36Z
dc.date.issued2016-11-01
dc.description.abstractQuasi-analytical algorithm (QAA) was designed to derive the inherent optical properties (IOPs) of water bodies from above-surface remote sensing reflectance (R-rs). Several variants of QAA have been developed for environments with different bio-optical characteristics. However, most variants of QAA suffer from moderate to high negative IOP prediction when applied to tropical eutrophic waters. This research is aimed at parametrizing a QAA for tropical eutrophic water dominated by cyanobacteria. The alterations proposed in the algorithm yielded accurate absorption coefficients and chlorophyll-a (Chl-a) concentration. The main changes accomplished were the selection of wavelengths representative of the optically relevant constituents (ORCs) and calibration of values directly associated with the pigments and detritus plus colored dissolved organic material (CDM) absorption coefficients. The re-parametrized QAA eliminated the retrieval of negative values, commonly identified in other variants of QAA. The calibrated model generated a normalized root mean square error (NRMSE) of 21.88% and a mean absolute percentage error (MAPE) of 28.27% for a(t)(lambda), where the largest errors were found at 412 nm and 620 nm. Estimated NRMSE for a(CDM)(lambda) was 18.86% with a MAPE of 31.17%. A NRMSE of 22.94% and a MAPE of 60.08% were obtained for a(phi)(lambda). Estimated a(phi)(665) and a(phi)(709) was used to predict Chl-a concentration. a(phi)(665) derived from QAA for Barra Bonita Hydroelectric Reservoir (QAA_BBHR) was able to predict Chl-a accurately, with a NRMSE of 11.3% and MAPE of 38.5%. The performance of the Chl-a model was comparable to some of the most widely used empirical algorithms such as 2-band, 3-band, and the normalized difference chlorophyll index (NDCI). The new QAA was parametrized based on the band configuration of MEdium Resolution Imaging Spectrometer (MERIS), Sentinel-2A and 3A and can be readily scaled-up for spatiotemporal monitoring of IOPs in tropical waters. (C) 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.en
dc.description.affiliationSao Paulo State Univ, Dept Cartog, Presidente Prudente, SP, Brazil
dc.description.affiliationUniv Georgia, Dept Geog, Ctr Geospatial Res, Athens, GA 30602 USA
dc.description.affiliationNatl Inst Space Res, Image Proc Div, Sao Jose Dos Campos, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Cartog, Presidente Prudente, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipPPGCC/UNESP
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2012/19821-1
dc.description.sponsorshipIdFAPESP: 2013/09045-7
dc.description.sponsorshipIdFAPESP: 2015/21586-9
dc.description.sponsorshipIdFAPESP: 2015/18525-8
dc.description.sponsorshipIdCNPq: 472131/2012-5
dc.description.sponsorshipIdCNPq: 482605/2013-8
dc.description.sponsorshipIdCNPq: 400881/2013-6
dc.description.sponsorshipIdCNPq: 200157/2015-9
dc.format.extent28-47
dc.identifierhttp://dx.doi.org/10.1016/j.isprsjprs.2016.08.009
dc.identifier.citationIsprs Journal Of Photogrammetry And Remote Sensing. Amsterdam: Elsevier Science Bv, v. 121, p. 28-47, 2016.
dc.identifier.doi10.1016/j.isprsjprs.2016.08.009
dc.identifier.fileWOS000387518300003.pdf
dc.identifier.issn0924-2716
dc.identifier.lattes6691310394410490
dc.identifier.orcid0000-0002-8077-2865
dc.identifier.urihttp://hdl.handle.net/11449/162154
dc.identifier.wosWOS:000387518300003
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofIsprs Journal Of Photogrammetry And Remote Sensing
dc.relation.ispartofsjr3,169
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectQuasi-analytical algorithm
dc.subjectInland waters
dc.subjectAlgal bloom
dc.subjectBio-optical model
dc.subjectRemote sensing reflectance
dc.subjectInherent optical properties
dc.titleParametrization and calibration of a quasi-analytical algorithm for tropical eutrophic watersen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes6691310394410490[1]
unesp.author.orcid0000-0002-8077-2865[1]
unesp.departmentCartografia - FCTpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000387518300003.pdf
Tamanho:
4.3 MB
Formato:
Adobe Portable Document Format
Descrição: