Publicação: Estrutura local de alguns subconjuntos do espaço euclidiano via teoria de desdobramentos
Carregando...
Arquivos
Data
2015-02-09
Autores
Orientador
Martins, Luciana de Fátima 

Coorientador
Pós-graduação
Matemática - IBILCE
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto

Resumo
Resumo (inglês)
Let F : R × Rr → R be a smooth function. We can naturally regard F as an r-parameter family of functions, which is called an unfolding of a certain function in this family. The existence of unfoldings with the property of be versal is one of the central results of the Singularity Theory. Roughly speaking, a versal unfolding of a real function g contains every functions close to g. Recognize versal unfoldings is important to study properties of subsets of the Euclidean space which are preserved by diffeomorphisms. In this work we will go through some of the important results of the Singular Theory about transversality, genericity, classification and about unfoldings of real functions and then through some applications to the study of the generic local structure of some subsets of the Euclidean space like curves and surfaces.
Resumo (português)
Seja F : R × Rr → R uma função suave. Podemos naturalmente considerar F como uma família de funções a r-parâmetros, a qual é chamada de um desdobramento de uma determinada função desta família. A existência de desdobramentos com a propriedade de serem versais 'e um dos resultados centrais da Teoria de Singularidades. A grosso modo, um desdobramento versal de uma função real g contém todas as funções próximas a g. Reconhecer desdobramentos versais é importante para o estudo de propriedades de subconjuntos do espaço Euclidiano que são preservadas por difeomorfismos. Neste trabalho, vamos passar por alguns resultados importantes da Teoria de Singularidades relacionados à transversalidade, genericidade, classificação e sobre desdobramentos de funções reais e, então, por algumas aplicações ao estudo da estrutura local genérica de alguns subconjuntos do espaço Euclidiano, como curvas e superfícies.
Descrição
Palavras-chave
Idioma
Português
Como citar
FRANCISCO, Alex Paulo. Estrutura local de alguns subconjuntos do espaço euclidiano via teoria de desdobramentos. 2015. 162 f. Dissertação (mestrado) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas, 2015.