Logo do repositório

A control volume scheme using compact integrated radial basis function stencils for solving the Richards equation

dc.contributor.authorDuc Ngo-Cong
dc.contributor.authorNam Mai-Duy
dc.contributor.authorAntille, Diogenes L.
dc.contributor.authorvan Genuchten, Martinus Th [UNESP]
dc.contributor.institutionUniv Southern Queensland
dc.contributor.institutionCSIRO Agr & Food
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T17:06:45Z
dc.date.available2020-12-10T17:06:45Z
dc.date.issued2020-01-01
dc.description.abstractA new control volume approach is developed based on compact integrated radial basis function (CIRBF) stencils for solution of the highly nonlinear Richards equation describing transient water flow in variably saturated soils. Unlike the conventional control volume method, which is regarded as second-order accurate, the proposed approach has high-order accuracy owing to the use of a compact integrated radial basis function approximation that enables improved flux predictions. The method is used to solve the Richards equation for transient flow in 1D homogeneous and heterogeneous soil profiles. Numerical results for different boundary conditions, initial conditions and soil types are shown to be in good agreement with Warrick's semi-analytical solution and simulations using the HYDRUS-1D software package. Results obtained with the proposed method were far less dependent upon the grid spacing than the HYDRUS-1D finite element solutions.en
dc.description.affiliationUniv Southern Queensland, Inst Adv Engn & Space Sci, Toowoomba, Qld 4350, Australia
dc.description.affiliationUniv Southern Queensland, Fac Hlth Engn & Sci, Sch Mech & Elect Engn, Toowoomba, Qld 4350, Australia
dc.description.affiliationCSIRO Agr & Food, Canberra, ACT 2601, Australia
dc.description.affiliationUniv Southern Queensland, Ctr Agr Engn, Toowoomba, Qld 4350, Australia
dc.description.affiliationUniv Fed Rio de Janeiro, Dept Nucl Engn, Rio De Janeiro, Brazil
dc.description.affiliationSao Paulo State Univ, Ctr Environm Studies, CEA, Rio Claro, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Ctr Environm Studies, CEA, Rio Claro, Brazil
dc.description.sponsorshipUniversity of Southern Queensland, Australia
dc.description.sponsorshipBasin Studies Laboratory (LEBAC) of the Department of Geology
dc.description.sponsorshipCenter for Environmental Studies (CEA) of UNESP in Brazil
dc.format.extent10
dc.identifierhttp://dx.doi.org/10.1016/j.jhydrol.2019.124240
dc.identifier.citationJournal Of Hydrology. Amsterdam: Elsevier, v. 580, 10 p., 2020.
dc.identifier.doi10.1016/j.jhydrol.2019.124240
dc.identifier.issn0022-1694
dc.identifier.urihttp://hdl.handle.net/11449/195166
dc.identifier.wosWOS:000509620900003
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofJournal Of Hydrology
dc.sourceWeb of Science
dc.subjectRichards equation
dc.subjectFinite volume method
dc.subjectIntegrated radial basis function
dc.subjectCompact stencil
dc.subjectUnsaturated flow
dc.titleA control volume scheme using compact integrated radial basis function stencils for solving the Richards equationen
dc.typeArtigopt
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0002-4924-9689[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Centro de Estudos Ambientais, Rio Claropt

Arquivos