Logotipo do repositório
 

Publicação:
Automatic landslide recognition through Optimum-Path Forest

dc.contributor.authorPisani, R. [UNESP]
dc.contributor.authorRiedel, P. [UNESP]
dc.contributor.authorCosta, K. [UNESP]
dc.contributor.authorNakamura, R. [UNESP]
dc.contributor.authorPereira, C. [UNESP]
dc.contributor.authorRosa, G. [UNESP]
dc.contributor.authorPapa, J. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:27:17Z
dc.date.available2014-05-27T11:27:17Z
dc.date.issued2012-12-01
dc.description.abstractIn this paper we shed light over the problem of landslide automatic recognition using supervised classification, and we also introduced the OPF classifier in this context. We employed two images acquired from Geoeye-MS satellite at March-2010 in the northwest (high steep areas) and north sides (pipeline area) covering the area of Duque de Caxias city, Rio de Janeiro State, Brazil. The landslide recognition rate has been assessed through a cross-validation with 10 runnings. In regard to the classifiers, we have used OPF against SVM with Radial Basis Function for kernel mapping and a Bayesian classifier. We can conclude that OPF, Bayes and SVM achieved high recognition rates, being OPF the fastest approach. © 2012 IEEE.en
dc.description.affiliationUNESP - São Paulo State University Geosciences and Exact Sciences Institute
dc.description.affiliationUNESP - São Paulo State University Department of Computing
dc.description.affiliationUnespUNESP - São Paulo State University Geosciences and Exact Sciences Institute
dc.description.affiliationUnespUNESP - São Paulo State University Department of Computing
dc.format.extent6228-6231
dc.identifierhttp://dx.doi.org/10.1109/IGARSS.2012.6352681
dc.identifier.citationInternational Geoscience and Remote Sensing Symposium (IGARSS), p. 6228-6231.
dc.identifier.doi10.1109/IGARSS.2012.6352681
dc.identifier.scopus2-s2.0-84873124352
dc.identifier.urihttp://hdl.handle.net/11449/73818
dc.identifier.wosWOS:000313189406055
dc.language.isoeng
dc.relation.ispartofInternational Geoscience and Remote Sensing Symposium (IGARSS)
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAutomatic recognition
dc.subjectBayesian classifier
dc.subjectCross validation
dc.subjectKernel mapping
dc.subjectOptimum-path forests
dc.subjectRadial basis functions
dc.subjectRecognition rates
dc.subjectSupervised classification
dc.subjectGeology
dc.subjectRadial basis function networks
dc.subjectRemote sensing
dc.subjectLandslides
dc.titleAutomatic landslide recognition through Optimum-Path Foresten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dspace.entity.typePublication
unesp.author.orcid0000-0002-6494-7514[7]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentGeologia Aplicada - IGCEpt

Arquivos