Publicação: Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach
dc.contributor.author | Moraes Tavares, Rose Luiza | |
dc.contributor.author | Medeiros Oliveira, Stanley Robson de | |
dc.contributor.author | Martins de Barros, Flavio Margarito | |
dc.contributor.author | Vieira Farhate, Camila Viana | |
dc.contributor.author | Souza, Zigomar Menezes de | |
dc.contributor.author | La Scala Junior, Newton [UNESP] | |
dc.contributor.institution | Univ Rio Verde | |
dc.contributor.institution | Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T17:48:51Z | |
dc.date.available | 2018-11-26T17:48:51Z | |
dc.date.issued | 2018-07-01 | |
dc.description.abstract | The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of Sao Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R-2 = 0.80) for predicted and observed values. | en |
dc.description.affiliation | Univ Rio Verde, ESUCARV, CP 104, BR-75901970 Rio Verde, Go, Brazil | |
dc.description.affiliation | Embrapa Agr Informat, Artificial Intelligence Lab, Av Andre Tosello 209, BR-13083886 Campinas, SP, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, FEAGRI, Av Candido Rondon 501, BR-13083875 Campinas, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, FCAV, Dept Exact Sci, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, FCAV, Dept Exact Sci, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, Brazil | |
dc.format.extent | 281-287 | |
dc.identifier | http://dx.doi.org/10.1590/1678-992X-2017-0095 | |
dc.identifier.citation | Scientia Agricola. Cerquera Cesar: Univ Sao Paolo, v. 75, n. 4, p. 281-287, 2018. | |
dc.identifier.doi | 10.1590/1678-992X-2017-0095 | |
dc.identifier.file | S0103-90162018000400281.pdf | |
dc.identifier.issn | 1678-992X | |
dc.identifier.scielo | S0103-90162018000400281 | |
dc.identifier.uri | http://hdl.handle.net/11449/164034 | |
dc.identifier.wos | WOS:000428564200002 | |
dc.language.iso | eng | |
dc.publisher | Univ Sao Paolo | |
dc.relation.ispartof | Scientia Agricola | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Saccharum officinarum | |
dc.subject | soil respiration | |
dc.subject | green sugarcane | |
dc.subject | clay | |
dc.title | Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach | en |
dc.type | Artigo | |
dcterms.rightsHolder | Univ Sao Paolo | |
dspace.entity.type | Publication | |
unesp.department | Ciências Exatas - FCAV | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- S0103-90162018000400281.pdf
- Tamanho:
- 504.6 KB
- Formato:
- Adobe Portable Document Format