Logotipo do repositório
 

Publicação:
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach

dc.contributor.authorMoraes Tavares, Rose Luiza
dc.contributor.authorMedeiros Oliveira, Stanley Robson de
dc.contributor.authorMartins de Barros, Flavio Margarito
dc.contributor.authorVieira Farhate, Camila Viana
dc.contributor.authorSouza, Zigomar Menezes de
dc.contributor.authorLa Scala Junior, Newton [UNESP]
dc.contributor.institutionUniv Rio Verde
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:48:51Z
dc.date.available2018-11-26T17:48:51Z
dc.date.issued2018-07-01
dc.description.abstractThe Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of Sao Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R-2 = 0.80) for predicted and observed values.en
dc.description.affiliationUniv Rio Verde, ESUCARV, CP 104, BR-75901970 Rio Verde, Go, Brazil
dc.description.affiliationEmbrapa Agr Informat, Artificial Intelligence Lab, Av Andre Tosello 209, BR-13083886 Campinas, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, FEAGRI, Av Candido Rondon 501, BR-13083875 Campinas, SP, Brazil
dc.description.affiliationSao Paulo State Univ, FCAV, Dept Exact Sci, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, FCAV, Dept Exact Sci, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, Brazil
dc.format.extent281-287
dc.identifierhttp://dx.doi.org/10.1590/1678-992X-2017-0095
dc.identifier.citationScientia Agricola. Cerquera Cesar: Univ Sao Paolo, v. 75, n. 4, p. 281-287, 2018.
dc.identifier.doi10.1590/1678-992X-2017-0095
dc.identifier.fileS0103-90162018000400281.pdf
dc.identifier.issn1678-992X
dc.identifier.scieloS0103-90162018000400281
dc.identifier.urihttp://hdl.handle.net/11449/164034
dc.identifier.wosWOS:000428564200002
dc.language.isoeng
dc.publisherUniv Sao Paolo
dc.relation.ispartofScientia Agricola
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectSaccharum officinarum
dc.subjectsoil respiration
dc.subjectgreen sugarcane
dc.subjectclay
dc.titlePrediction of soil CO2 flux in sugarcane management systems using the Random Forest approachen
dc.typeArtigo
dcterms.rightsHolderUniv Sao Paolo
dspace.entity.typePublication
unesp.departmentCiências Exatas - FCAVpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S0103-90162018000400281.pdf
Tamanho:
504.6 KB
Formato:
Adobe Portable Document Format