Algebraic and Geometric Methods for Construction of Topological Quantum Codes from Lattices
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Mdpi
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Current work provides an algebraic and geometric technique for building topological quantum codes. From the lattice partition derived of quotient lattices Lambda '/Lambda of index m combined with geometric technique of the projections of vector basis Lambda ' over vector basis Lambda, we reproduce surface codes found in the literature with parameter [[2m,2,|a|+|b|]] for the case Lambda=Z2 and m=a2+b2, where a and b are integers that are not null, simultaneously. We also obtain a new class of surface code with parameters [[2m,2,|a|+|b|]] from the Lambda=A2-lattice when m can be expressed as m=a2+ab+b2, where a and b are integer values. Finally, we will show how this technique can be extended to the construction of color codes with parameters [[18m,4,6(|a|+|b|)]] by considering honeycomb lattices partition A2/Lambda ' of index m=9(a2+ab+b2) where a and b are not null integers.
Descrição
Palavras-chave
surface codes, color codes, flat torus, lattice
Idioma
Inglês
Citação
Axioms. Basel: Mdpi, v. 13, n. 10, 16 p., 2024.




