Algebraic and Geometric Methods for Construction of Topological Quantum Codes from Lattices
| dc.contributor.author | Carvalho, Edson Donizete de [UNESP] | |
| dc.contributor.author | Soares Jr, Waldir Silva | |
| dc.contributor.author | Copatti, Douglas Fernando | |
| dc.contributor.author | Martins, Carlos Alexandre Ribeiro | |
| dc.contributor.author | Silva, Eduardo Brandani da | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | UTFPR Univ Tecn Fed Parana | |
| dc.contributor.institution | Inst Fed Parana Campus Pitanga | |
| dc.contributor.institution | Universidade Estadual de Maringá (UEM) | |
| dc.date.accessioned | 2025-04-29T19:28:03Z | |
| dc.date.issued | 2024-10-01 | |
| dc.description.abstract | Current work provides an algebraic and geometric technique for building topological quantum codes. From the lattice partition derived of quotient lattices Lambda '/Lambda of index m combined with geometric technique of the projections of vector basis Lambda ' over vector basis Lambda, we reproduce surface codes found in the literature with parameter [[2m,2,|a|+|b|]] for the case Lambda=Z2 and m=a2+b2, where a and b are integers that are not null, simultaneously. We also obtain a new class of surface code with parameters [[2m,2,|a|+|b|]] from the Lambda=A2-lattice when m can be expressed as m=a2+ab+b2, where a and b are integer values. Finally, we will show how this technique can be extended to the construction of color codes with parameters [[18m,4,6(|a|+|b|)]] by considering honeycomb lattices partition A2/Lambda ' of index m=9(a2+ab+b2) where a and b are not null integers. | en |
| dc.description.affiliation | UNESP Univ Estadual Paulista, Dept Math, BR-15385000 Ilha Solteira, Brazil | |
| dc.description.affiliation | UTFPR Univ Tecn Fed Parana, Dept Math, BR-85503390 Pato Branco, Brazil | |
| dc.description.affiliation | Inst Fed Parana Campus Pitanga, Dept Math, BR-85200000 Pitanga, Brazil | |
| dc.description.affiliation | UEM Univ Estadual Maringa, Dept Math, Ave Colombo 5790, BR-87020900 Maringa, Brazil | |
| dc.description.affiliationUnesp | UNESP Univ Estadual Paulista, Dept Math, BR-15385000 Ilha Solteira, Brazil | |
| dc.format.extent | 16 | |
| dc.identifier | http://dx.doi.org/10.3390/axioms13100676 | |
| dc.identifier.citation | Axioms. Basel: Mdpi, v. 13, n. 10, 16 p., 2024. | |
| dc.identifier.doi | 10.3390/axioms13100676 | |
| dc.identifier.uri | https://hdl.handle.net/11449/302909 | |
| dc.identifier.wos | WOS:001342619200001 | |
| dc.language.iso | eng | |
| dc.publisher | Mdpi | |
| dc.relation.ispartof | Axioms | |
| dc.source | Web of Science | |
| dc.subject | surface codes | |
| dc.subject | color codes | |
| dc.subject | flat torus | |
| dc.subject | lattice | |
| dc.title | Algebraic and Geometric Methods for Construction of Topological Quantum Codes from Lattices | en |
| dc.type | Artigo | pt |
| dcterms.rightsHolder | Mdpi | |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0002-3822-8284[3] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteira | pt |
