Logotipo do repositório
 

Publicação:
Electrochemical oxidation of sulfamethazine on a glassy carbon electrode modified with graphene and gold nanoparticles

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

This work presents a comprehensive investigation of the oxidation mechanism of sulfamethazine (SMZ) combining electrochemical experiments and molecular modelling techniques. Cyclic voltammetry and differential pulse voltammetry experiments were performed in phosphate buffer solution (PBS) using a glassy carbon (GC) electrode modified with reduced graphene oxide and gold nanoparticles (rGO-AuNPs). Molecular modelling studies were performed via Density Functional Theory (DFT) employing Becke's LYP (B3LYP) exchange-correlation functional and the 6-31G(p,d) basis set. The evaluation of molecular reactivity was accomplished by Condensed-to-Atoms Fukui Indexes (CAFIs). In the theoretical studies, three species were analysed: natural SMZ (SMZ(0)) and its protolytic structures, SMZ(+H) and SMZ(-H). The CV results show a well-defined irreversible SMZ oxidation peak at +0.89 V. The molecular modelling studies indicate that SMZ(0) is the species that effectively participates in the oxidation process. Based on the reactivity indexes obtained, two distinct oxidation mechanisms associated with EC processes occurring in the systems were proposed.

Descrição

Palavras-chave

Density Functional Theory, Electronic structure calculations, Fukui indexes, Oxidation mechanisms, Sulfamethazine

Idioma

Inglês

Como citar

Electrochimica Acta, v. 192, p. 8-14.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação