Publicação: QUALITY ANALYSIS FOR THE VRP SOLUTIONS USING COMPUTER VISION TECHNIQUES
dc.contributor.author | Néia, Silvely S. | |
dc.contributor.author | Artero, Almir O. | |
dc.contributor.author | Cunha, Cláudio B. Da | |
dc.contributor.institution | Universidade Estadual de São Paulo Departamento de Estatística | |
dc.contributor.institution | Universidade Estadual de São Paulo Departamento de Matemática e Ciência da Computação | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.date.accessioned | 2018-11-12T17:26:01Z | |
dc.date.available | 2018-11-12T17:26:01Z | |
dc.date.issued | 2017-08-01 | |
dc.description.abstract | ABSTRACT The Vehicle Routing Problem (VRP) is a classical problem, and when the number of customers is very large, the task of finding the optimal solution can be extremely complex. It is still necessary to find an effective way to evaluate the quality of solutions when there is no known optimal solution. This work presents a suggestion to analyze the quality of vehicle routes, based only on their geometric properties. The proposed descriptors aim to be invariants in relation to the amount of customers, vehicles and the size of the covered area. Applying the methodology proposed in this work it is possible to obtain the route and, then, to evaluate the quality of solutions obtained using computer vision. Despite considering problems with different configurations for the number of customers, vehicles and service area, the results obtained with the experiments show that the proposal is useful for classifying the routes into good or bad classes. A visual analysis was performed using the Parallel Coordinates and Viz3D techniques and then a classification was performed by a Backpropagation Neural Network, which indicated an accuracy rate of 99.87%. | en |
dc.description.affiliation | Universidade Estadual de São Paulo Departamento de Estatística | |
dc.description.affiliation | Universidade Estadual de São Paulo Departamento de Matemática e Ciência da Computação | |
dc.description.affiliation | Universidade de São Paulo Departamento de Engenharia de Transportes | |
dc.format.extent | 387-402 | |
dc.identifier | http://dx.doi.org/10.1590/0101-7438.2017.037.02.0387 | |
dc.identifier.citation | Pesquisa Operacional. Sociedade Brasileira de Pesquisa Operacional, v. 37, n. 2, p. 387-402, 2017. | |
dc.identifier.doi | 10.1590/0101-7438.2017.037.02.0387 | |
dc.identifier.file | S0101-74382017000200387.pdf | |
dc.identifier.issn | 0101-7438 | |
dc.identifier.scielo | S0101-74382017000200387 | |
dc.identifier.uri | http://hdl.handle.net/11449/157574 | |
dc.language.iso | eng | |
dc.publisher | Sociedade Brasileira de Pesquisa Operacional | |
dc.relation.ispartof | Pesquisa Operacional | |
dc.relation.ispartofsjr | 0,365 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | SciELO | |
dc.subject | Vehicle Routing Problem | en |
dc.subject | Shape Analysis | en |
dc.subject | Pattern Recognition | en |
dc.title | QUALITY ANALYSIS FOR THE VRP SOLUTIONS USING COMPUTER VISION TECHNIQUES | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.lattes | 6469656882616214[2] | |
unesp.author.orcid | 0000-0001-6824-7251[2] |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- S0101-74382017000200387.pdf
- Tamanho:
- 1.87 MB
- Formato:
- Adobe Portable Document Format