Gene expression and biochemical profiling in the mitigation of heat stress in common bean using Bacillus subtilis
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The present work aimed to evaluate the effect of heat stress on common bean (Phaseolus vulgaris L.) genotypes during the reproductive phase as a function of the inoculation of plants with Bacillus subtilis. The treatments were established by inoculating two strains of B. subtilis (AP-3 and AP-12) and a control. The plants were subjected to heat stress when they reached the reproductive stage, with an increase in temperature to 28/33°C. The duration of the stress period was ten days. Flowering, biochemical, and gene expression evaluations were performed. There was the interaction of B. subtilis AP-3 with the bean cultivar IAC-Imperador, reducing flower abortion, promoting the formation of new flower buds, and increasing the content of proline and guaiacol peroxidase activity in plant tissues. However, there was a reduction of transcription of genes encoding the 1-carboxylic acid-1aminocyclopropane oxidase and ethylene response factors and an increase of the Δ1-pyrroline-5-carboxylate synthetase1 gene. These results suggest that B. subtilis may modulate some metabolic pathways in response to high-temperature stress during the reproductive phase of the common bean. This also confirms that Bacillus strains represent a useful option to moderate abiotic stresses.
Descrição
Palavras-chave
gene expression, Phaseolus vulgaris L, plant growth-promoting rhizobacteria, stress tolerance
Idioma
Inglês
Citação
Biologia Plantarum, v. 67, p. 213-223.




