Logotipo do repositório
 

Publicação:
Particle Cloud Generation with Message Passing Generative Adversarial Networks

dc.contributor.authorKansal, Raghav
dc.contributor.authorDuarte, Javier
dc.contributor.authorSu, Hao
dc.contributor.authorOrzari, Breno [UNESP]
dc.contributor.authorTomei, Thiago [UNESP]
dc.contributor.authorPierini, Maurizio
dc.contributor.authorTouranakou, Mary
dc.contributor.authorVlimant, Jean-Roch
dc.contributor.authorRanzato, M.
dc.contributor.authorBeygelzimer, A.
dc.contributor.authorDauphin, Y.
dc.contributor.authorLiang, P. S.
dc.contributor.authorVaughan, J. W.
dc.contributor.institutionUniv Calif San Diego
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionEuropean Org Nucl Res (CERN
dc.contributor.institutionCALTECH
dc.contributor.institutionNatl & Kapodistrian Univ Athens
dc.date.accessioned2023-07-29T11:39:36Z
dc.date.available2023-07-29T11:39:36Z
dc.date.issued2021-01-01
dc.description.abstractIn high energy physics (HEP), jets are collections of correlated particles produced ubiquitously in particle collisions such as those at the CERN Large Hadron Collider (LHC). Machine learning (ML)-based generative models, such as generative adversarial networks (GANs), have the potential to significantly accelerate LHC jet simulations. However, despite jets having a natural representation as a set of particles in momentum-space, a.k.a. a particle cloud, there exist no generative models applied to such a dataset. In this work, we introduce a new particle cloud dataset (JetNet), and apply to it existing point cloud GANs. Results are evaluated using (1) 1-Wasserstein distances between high- and low-level feature distributions, (2) a newly developed Frechet ParticleNet Distance, and (3) the coverage and (4) minimum matching distance metrics. Existing GANs are found to be inadequate for physics applications, hence we develop a new message passing GAN (MPGAN), which outperforms existing point cloud GANs on virtually every metric and shows promise for use in HEP. We propose JetNet as a novel point-cloud-style dataset for the ML community to experiment with, and set MPGAN as a benchmark to improve upon for future generative models. Additionally, to facilitate research and improve accessibility and reproducibility in this area, we release the open-source JETNET Python package with interfaces for particle cloud datasets, implementations for evaluation and loss metrics, and more tools for ML in HEP development.en
dc.description.affiliationUniv Calif San Diego, La Jolla, CA 92093 USA
dc.description.affiliationUniv Estadual Paulista, BR-01049010 Sao Paulo, SP, Brazil
dc.description.affiliationEuropean Org Nucl Res (CERN, CH-1211 Geneva 23, Switzerland
dc.description.affiliationCALTECH, Pasadena, CA 91125 USA
dc.description.affiliationNatl & Kapodistrian Univ Athens, Athens, Greece
dc.description.affiliationUnespUniv Estadual Paulista, BR-01049010 Sao Paulo, SP, Brazil
dc.description.sponsorshipEuropean Research Council (ERC) under the European Union
dc.description.sponsorshipIRIS-HEP fellowship through the U.S. National Science Foundation (NSF)
dc.description.sponsorshipU.S. Department of Energy (DOE)
dc.description.sponsorshipDOE, Office of Science, Office of High Energy Physics Early Career Research program
dc.description.sponsorshipDOE, Office of Advanced Scientific Computing Research
dc.description.sponsorshipFunda��o de Amparo � Pesquisa do Estado de S�o Paulo (FAPESP)
dc.description.sponsorshipERC under the European Union
dc.description.sponsorshipDOE, Office of Science, Office of High Energy Physics
dc.description.sponsorshipEU
dc.description.sponsorshipNSF
dc.description.sponsorshipUniversity of California Office of the President
dc.description.sponsorshipUniversity of California San Diego's California Institute for Telecommunications and Information Technology/Qualcomm Institute
dc.description.sponsorshipIdEuropean Research Council (ERC) under the European Union: 772369
dc.description.sponsorshipIdIRIS-HEP fellowship through the U.S. National Science Foundation (NSF): OAC-1836650
dc.description.sponsorshipIdU.S. Department of Energy (DOE): DE-AC0207CH11359
dc.description.sponsorshipIdDOE, Office of Science, Office of High Energy Physics Early Career Research program: DESC0021187
dc.description.sponsorshipIdDOE, Office of Advanced Scientific Computing Research: DE-SC0021396
dc.description.sponsorshipIdFAPESP: 2018/25225-9
dc.description.sponsorshipIdFAPESP: 2018/01398-1
dc.description.sponsorshipIdFAPESP: 2019/16401-0
dc.description.sponsorshipIdERC under the European Union: 772369
dc.description.sponsorshipIdDOE, Office of Science, Office of High Energy Physics: DE-SC0011925
dc.description.sponsorshipIdDOE, Office of Science, Office of High Energy Physics: DE-SC0019227
dc.description.sponsorshipIdDOE, Office of Science, Office of High Energy Physics: DE-AC02-07CH11359
dc.description.sponsorshipIdEU: 952215
dc.description.sponsorshipIdNSF: 1904444
dc.description.sponsorshipIdNSF: CNS-1730158
dc.description.sponsorshipIdNSF: ACI1540112
dc.description.sponsorshipIdNSF: ACI-1541349
dc.description.sponsorshipIdNSF: OAC-1826967
dc.format.extent14
dc.identifier.citationAdvances in Neural Information Processing Systems 34 (neurips 2021). La Jolla: Neural Information Processing Systems (nips), v. 34, 14 p., 2021.
dc.identifier.issn1049-5258
dc.identifier.urihttp://hdl.handle.net/11449/245186
dc.identifier.wosWOS:000922928402049
dc.language.isoeng
dc.publisherNeural Information Processing Systems (nips)
dc.relation.ispartofAdvances In Neural Information Processing Systems 34 (neurips 2021)
dc.sourceWeb of Science
dc.titleParticle Cloud Generation with Message Passing Generative Adversarial Networksen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderNeural Information Processing Systems (nips)
dspace.entity.typePublication

Arquivos

Coleções