Logo do repositório

A mechanism for detecting normally hyperbolic invariant tori in differential equations

dc.contributor.authorPereira, Pedro C.C.R.
dc.contributor.authorNovaes, Douglas D.
dc.contributor.authorCândido, Murilo R. [UNESP]
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:59:18Z
dc.date.issued2023-09-01
dc.description.abstractDetermining the existence of compact invariant manifolds is a central quest in the qualitative theory of differential equations. Singularities, periodic solutions, and invariant tori are examples of such invariant manifolds. A classical and useful result from the averaging theory relates the existence of isolated periodic solutions of non-autonomous periodic differential equations, given in a specific standard form, with the existence of simple singularities of the so-called guiding system, which is an autonomous differential equation given in terms of the first non-vanishing higher order averaged function. In this paper, we provide an analogous result for the existence of invariant tori. Namely, we show that a non-autonomous periodic differential equation, given in the standard form, has a normally hyperbolic invariant torus in the extended phase space provided that the guiding system has a hyperbolic limit cycle. We apply this result to show the existence of normally hyperbolic invariant tori in a family of jerk differential equations.en
dc.description.affiliationDepartamento de Matemática Instituto de Matemática Estatística e Computação Científica (IMECC) Universidade Estadual de Campinas (UNICAMP), Rua Sérgio Buarque de Holanda, 651, Cidade Universitária Zeferino Vaz, Campinas
dc.description.affiliationDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista (UNESP), Rua Roberto Simonsen, 305, Centro Educacional, Presidente Prudente
dc.description.affiliationUnespDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista (UNESP), Rua Roberto Simonsen, 305, Centro Educacional, Presidente Prudente
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2018/07344-0
dc.description.sponsorshipIdFAPESP: 2018/13481-0
dc.description.sponsorshipIdFAPESP: 2019/05657-4
dc.description.sponsorshipIdFAPESP: 2019/10269-3
dc.description.sponsorshipIdFAPESP: 2020/14232-4
dc.description.sponsorshipIdFAPESP: 2021/10606-0
dc.description.sponsorshipIdFAPESP: 2022/09633-5
dc.description.sponsorshipIdCNPq: 309110/2021-1
dc.description.sponsorshipIdCNPq: 438975/2018-9
dc.format.extent1-45
dc.identifierhttp://dx.doi.org/10.1016/j.matpur.2023.06.008
dc.identifier.citationJournal des Mathematiques Pures et Appliquees, v. 177, p. 1-45.
dc.identifier.doi10.1016/j.matpur.2023.06.008
dc.identifier.issn0021-7824
dc.identifier.scopus2-s2.0-85162923876
dc.identifier.urihttps://hdl.handle.net/11449/301757
dc.language.isoeng
dc.relation.ispartofJournal des Mathematiques Pures et Appliquees
dc.sourceScopus
dc.subjectAveraging theory
dc.subjectInvariant tori
dc.subjectMethod of continuation
dc.subjectNormally hyperbolic invariant manifolds
dc.titleA mechanism for detecting normally hyperbolic invariant tori in differential equationsen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbbcf06b3-c5f9-4a27-ac03-b690202a3b4e
relation.isOrgUnitOfPublication.latestForDiscoverybbcf06b3-c5f9-4a27-ac03-b690202a3b4e
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept

Arquivos