Effectiveness of Random Search in SVM hyper-parameter tuning
| dc.contributor.author | Mantovani, Rafael G. | |
| dc.contributor.author | Rossi, André L. D. [UNESP] | |
| dc.contributor.author | Vanschoren, Joaquin | |
| dc.contributor.author | Bischl, Bernd | |
| dc.contributor.author | De Carvalho, André C.P.L.F. | |
| dc.contributor.institution | Universidade de São Paulo (USP) | |
| dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
| dc.contributor.institution | Eindhoven University of Technology (TU/e) | |
| dc.contributor.institution | Ludwig-Maximilians-University Munich | |
| dc.date.accessioned | 2018-12-11T16:40:20Z | |
| dc.date.available | 2018-12-11T16:40:20Z | |
| dc.date.issued | 2015-09-28 | |
| dc.description.abstract | Classification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using meta-heuristics and Grid Search, but with a lower computational cost. | en |
| dc.description.affiliation | Universidade de São Paulo (USP) | |
| dc.description.affiliation | Universidade Estadual Paulista (UNESP) | |
| dc.description.affiliation | Eindhoven University of Technology (TU/e) | |
| dc.description.affiliation | Ludwig-Maximilians-University Munich | |
| dc.description.affiliationUnesp | Universidade Estadual Paulista (UNESP) | |
| dc.identifier | http://dx.doi.org/10.1109/IJCNN.2015.7280664 | |
| dc.identifier.citation | Proceedings of the International Joint Conference on Neural Networks, v. 2015-September. | |
| dc.identifier.doi | 10.1109/IJCNN.2015.7280664 | |
| dc.identifier.scopus | 2-s2.0-84950992668 | |
| dc.identifier.uri | http://hdl.handle.net/11449/168228 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Proceedings of the International Joint Conference on Neural Networks | |
| dc.rights.accessRights | Acesso aberto | |
| dc.source | Scopus | |
| dc.subject | Accuracy | |
| dc.subject | Blogs | |
| dc.subject | Computational modeling | |
| dc.subject | Heating | |
| dc.subject | Lead | |
| dc.subject | Support vector machines | |
| dc.subject | Training | |
| dc.title | Effectiveness of Random Search in SVM hyper-parameter tuning | en |
| dc.type | Trabalho apresentado em evento | |
| dspace.entity.type | Publication | |
| unesp.author.lattes | 5604829226181486[2] | |
| unesp.author.orcid | 0000-0001-6388-7479[2] |

