Logo do repositório

Effectiveness of Random Search in SVM hyper-parameter tuning

dc.contributor.authorMantovani, Rafael G.
dc.contributor.authorRossi, André L. D. [UNESP]
dc.contributor.authorVanschoren, Joaquin
dc.contributor.authorBischl, Bernd
dc.contributor.authorDe Carvalho, André C.P.L.F.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionEindhoven University of Technology (TU/e)
dc.contributor.institutionLudwig-Maximilians-University Munich
dc.date.accessioned2018-12-11T16:40:20Z
dc.date.available2018-12-11T16:40:20Z
dc.date.issued2015-09-28
dc.description.abstractClassification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using meta-heuristics and Grid Search, but with a lower computational cost.en
dc.description.affiliationUniversidade de São Paulo (USP)
dc.description.affiliationUniversidade Estadual Paulista (UNESP)
dc.description.affiliationEindhoven University of Technology (TU/e)
dc.description.affiliationLudwig-Maximilians-University Munich
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP)
dc.identifierhttp://dx.doi.org/10.1109/IJCNN.2015.7280664
dc.identifier.citationProceedings of the International Joint Conference on Neural Networks, v. 2015-September.
dc.identifier.doi10.1109/IJCNN.2015.7280664
dc.identifier.scopus2-s2.0-84950992668
dc.identifier.urihttp://hdl.handle.net/11449/168228
dc.language.isoeng
dc.relation.ispartofProceedings of the International Joint Conference on Neural Networks
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAccuracy
dc.subjectBlogs
dc.subjectComputational modeling
dc.subjectHeating
dc.subjectLead
dc.subjectSupport vector machines
dc.subjectTraining
dc.titleEffectiveness of Random Search in SVM hyper-parameter tuningen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.author.lattes5604829226181486[2]
unesp.author.orcid0000-0001-6388-7479[2]

Arquivos

Coleções