Logo do repositório
 

Automatic microstructural characterization and classification using artificial intelligence techniques on ultrasound signals

dc.contributor.authorNunes, Thiago M.
dc.contributor.authorDe Albuquerque, Victor Hugo C.
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorSilva, Cleiton C.
dc.contributor.authorNormando, Paulo G.
dc.contributor.authorMoura, Elineudo P.
dc.contributor.authorTavares, João Manuel R.S.
dc.contributor.institutionUniversidade Federal do Ceará (UFC)
dc.contributor.institutionUniversidade de Fortaleza
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Do Porto
dc.date.accessioned2014-05-27T11:29:41Z
dc.date.available2014-05-27T11:29:41Z
dc.date.issued2013-06-15
dc.description.abstractSecondary phases such as Laves and carbides are formed during the final solidification stages of nickel based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ″ and δ phases. This work presents a new application and evaluation of artificial intelligent techniques to classify (the background echo and backscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features extraction techniques, i.e.; detrended fluctuation analysis and the Hurst method, the accuracy and speed in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under study were the recent optimum-path forest (OPF) and the more traditional support vector machines and Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability. © 2013 Elsevier B.V. All rights reserved.en
dc.description.affiliationDepartamento de Engenharia de Teleinformática Universidade Federal Do Ceará, Fortaleza, Ceará
dc.description.affiliationPrograma de Pós-Graduação em Informática Aplicada Universidade de Fortaleza, Fortaleza, Ceará
dc.description.affiliationDepartamento de Ciência da Computação Universidade Estadual Paulista, Bauru, São Paulo
dc.description.affiliationDepartamento de Engenharia Metalúrgica e de Materiais Universidade Federal Do Ceará, Fortaleza, Ceará
dc.description.affiliationInstituto de Engenharia Mecânica e Gestão Industrial Departamento de Engenharia Mecânica Universidade Do Porto, Porto
dc.description.affiliationUnespDepartamento de Ciência da Computação Universidade Estadual Paulista, Bauru, São Paulo
dc.format.extent3096-3105
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2012.12.025
dc.identifier.citationExpert Systems with Applications, v. 40, n. 8, p. 3096-3105, 2013.
dc.identifier.doi10.1016/j.eswa.2012.12.025
dc.identifier.issn0957-4174
dc.identifier.lattes9039182932747194
dc.identifier.scopus2-s2.0-84874662110
dc.identifier.urihttp://hdl.handle.net/11449/75661
dc.identifier.wosWOS:000316522900030
dc.language.isoeng
dc.relation.ispartofExpert Systems with Applications
dc.relation.ispartofjcr3.768
dc.relation.ispartofsjr1,271
dc.rights.accessRightsAcesso restritopt
dc.sourceScopus
dc.subjectBayesian classifiers
dc.subjectDetrended fluctuation analysis and Hurst method
dc.subjectFeature extraction
dc.subjectNickel-based alloy
dc.subjectNon-destructive inspection
dc.subjectOptimum-path forest
dc.subjectSupport vector machines
dc.subjectThermal aging
dc.subjectBayesian classifier
dc.subjectDetrended fluctuation analysis
dc.subjectNickel based alloy
dc.subjectNon destructive inspection
dc.subjectOptimum-path forests
dc.subjectArtificial intelligence
dc.subjectCarbides
dc.subjectForestry
dc.subjectMicrostructure
dc.subjectNickel
dc.subjectNickel coatings
dc.subjectUltrasonic waves
dc.subjectAlloy
dc.subjectCoatings
dc.titleAutomatic microstructural characterization and classification using artificial intelligence techniques on ultrasound signalsen
dc.typeArtigopt
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.lattes9039182932747194
unesp.author.orcid0000-0001-7603-6526[7]
unesp.author.orcid0000-0002-6494-7514[3]
unesp.author.orcid0000-0001-6827-8939[4]
unesp.author.orcid0000-0003-3886-4309[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos