Logotipo do repositório
 

Publicação:
Kinematic vortices induced by defects in gapless superconductors

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The generalized time-dependent Ginzburg-Landau (GTDGL) theory was first proposed to describe better gap superconductors and the phenomenon of thermal phase-slips (PSs) in defect-free systems. However, there is a lack of information about studies involving PSs in mesoscopic superconductors with surface defects. Thus, in this work, we simulated samples with two co-linear surface defects consisting of a lower Tc superconductor narrowing the sample in its central part. The non-linear GTDGL equations were solved self-consistently under variable applied currents and by considering both gapless and gap-like superconductors. In such systems, the currents passing by the constriction induce the appearance of kinematic vortices even in the gapless sample. The dynamics always occur with a pair forming at opposite edges of the sample and annihilating in the center. It is noticed that the resistive state appears at distinct values of the applied current density for different samples, and the critical current presents a tiny difference between gapless and gap-like samples. It is worth mentioning that parameters such as the sizes of electrical contacts and constriction affect the critical current and the average velocity of the kinematic vortices.

Descrição

Palavras-chave

Constriction, GTDGL, Kinematic vortices, Mesoscopic superconductor, Topological patterns

Idioma

Inglês

Como citar

Physics Letters, Section A: General, Atomic and Solid State Physics, v. 419.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação