Publicação: Modeling thermal conductivity, specific heat, and density of milk: A neural network approach
dc.contributor.author | Mattar, H. L. | |
dc.contributor.author | Minim, L. A. | |
dc.contributor.author | Coimbra, JSR | |
dc.contributor.author | Minim, VPR | |
dc.contributor.author | Saraiva, S. H. | |
dc.contributor.author | Telis-Romero, J. | |
dc.contributor.institution | Universidade Federal de Viçosa (UFV) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-20T15:22:48Z | |
dc.date.available | 2014-05-20T15:22:48Z | |
dc.date.issued | 2004-11-01 | |
dc.description.abstract | The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better Suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0degreesC, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods. | en |
dc.description.affiliation | Univ Fed Vicosa, Dept Food Technol, Vicosa, MG, Brazil | |
dc.description.affiliation | UNESP, Dept Food Engn & Technol, São Paulo, Brazil | |
dc.description.affiliationUnesp | UNESP, Dept Food Engn & Technol, São Paulo, Brazil | |
dc.format.extent | 531-539 | |
dc.identifier | http://dx.doi.org/10.1081/JFP-120040207 | |
dc.identifier.citation | International Journal of Food Properties. New York: Marcel Dekker Inc., v. 7, n. 3, p. 531-539, 2004. | |
dc.identifier.doi | 10.1081/JFP-120040207 | |
dc.identifier.issn | 1094-2912 | |
dc.identifier.uri | http://hdl.handle.net/11449/33720 | |
dc.identifier.wos | WOS:000224316600014 | |
dc.language.iso | eng | |
dc.publisher | Marcel Dekker Inc | |
dc.relation.ispartof | International Journal of Food Properties | |
dc.relation.ispartofjcr | 1.845 | |
dc.relation.ispartofsjr | 0,513 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | milk | pt |
dc.subject | thermophysical properties | pt |
dc.subject | modeling | pt |
dc.subject | neural network | pt |
dc.title | Modeling thermal conductivity, specific heat, and density of milk: A neural network approach | en |
dc.type | Artigo | |
dcterms.license | http://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp | |
dcterms.rightsHolder | Marcel Dekker Inc | |
dspace.entity.type | Publication |
Arquivos
Licença do Pacote
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: